Open Access Open Access  Restricted Access Subscription Access

Recent Advances in Magnetic Ion-Doped Semiconductor Quantum Dots


Affiliations
1 New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
2 International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
 

Dilute magnetic semiconductor (DMS) quantum dots (QDs) have potential to be used as basic working components of spin-based electronic devices. Therefore it is important to study these materials from fundamental and technological viewpoints. Quantum confinement effects are known to enhance exchange interactions and induce properties that were previously not observed in bulk materials. In fact, properties are known to alter dramatically when dimensions are reduced to nanometre size regime. In this review we briefly discuss the recent advances in chemical (synthetic) and physical (properties) aspects of DMS QDs. We first discuss the various issues involved in the synthesis of DMS QDs followed by a discussion of the solutions obtained so far. We then discuss the interesting properties of DMS QDs with emphasis on their magnetic, magneto-optical and magneto-electrical properties arising from the cooperative effects of spinexchange interactions.

Keywords

Dilute Magnetic Semiconductors, Quantum Dots, Magnetic Circular Dichroism, Spintronics.
User
Notifications
Font Size

  • Wolf, S. et al., Spintronics: a spin-based electronics vision for the future. Science, 2001, 294, 1488–1495.
  • Zutic, I., Fabian, J. and Sarma, S. D., Spintronics: fundamentals and applications. Rev. Mod. Phys., 2004, 76, 323.
  • Ohno, H., Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951–956.
  • Weller, D. and Moser, A., Thermal effect limits in ultrahighdensity magnetic recording. IEEE Trans. Magn., 1999, 35, 4423– 4439.
  • Weller, D., Mosendz, O., Parker, G., Pisana, S. and Santos, T. S., L10 FePtX–Y media for heat assisted magnetic recording. Phys. Status Solidi A, 2013, 210, 1245–1260.
  • Guo, S., Zhang, S. and Sun, S., Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed., 2013, 52, 8526–8544.
  • Govan, J. and Gun’ko, Y. K., Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials, 2014, 4, 222–241.
  • Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M. and Basset, J. M., Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036–3075.
  • Shylesh, S., Schünemann, V. and Thiel, W. R., Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49, 3428–3459.
  • Van Esch, A. et al., Interplay between the magnetic and transport properties in the III–V diluted magnetic semiconductor Ga1− xMnxAs. Phys. Rev. B, 1997, 56, 13103.
  • Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S. and Iye, Y., (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett., 1996, 69, 363–365.
  • Blinowski, J. and Kacman, P., Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs. Phys. Rev. B, 2003, 67, 121204.
  • Edmonds, K. W. et al., Mn interstitial diffusion in (Ga, Mn)As. Phys. Rev. Lett., 2004, 92, 037201.
  • Hong, N. H., Sakai, J., Huong, N. T., Poirot, N. and Ruyter, A., Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys. Rev. B, 2005, 72, 045336.
  • Ogale, S. B. et al., High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−5. Phys. Rev. Lett., 2003, 91, 077205.
  • Dietl, T., A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater., 2010, 9, 965–974.
  • Pearton, S. et al., Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys., 2003, 93, 1–13.
  • Liu, C., Yun, F. and Morkoc, H., Ferromagnetism of ZnO and GaN: a review. J. Mater. Sci. Mater. Electron., 2005, 16, 555–597.
  • MacDonald, A., Schiffer, P. and Samarth, N., Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat. Mater., 2005, 4, 195–202.
  • Chambers, S. A. et al., Ferromagnetism in oxide semiconductors. Mater. Today, 2006, 9, 28–35.
  • Sarkar, I. et al., Ferromagnetism in zinc sulfide nanocrystals: dependence on manganese concentration. Phys. Rev. B, 2007, 75, 224409.
  • Norberg, N. S., Parks, G. L., Salley, G. M. and Gamelin, D. R., Giant excitonic Zeeman splittings in colloidal Co2+-doped ZnSe quantum dots. J. Am. Chem. Soc., 2006, 128, 13195–13203.
  • Cheng, S.-J., Theory of magnetism in diluted magnetic semiconductor nanocrystals. Phys. Rev. B, 2008, 77, 115310.
  • Shanker, G. S., Tandon, B., Shibata, T., Chattopadhyay, S. and Nag, A., Doping controls plasmonics, electrical conductivity, and carrier-mediated magnetic coupling in Fe and Sn codoped In2O3 nanocrystals: local structure is the key. Chem. Mater., 2015, 27, 892–900.
  • Leslie-Pelecky, D. L. and Rieke, R. D., Magnetic properties of nanostructured materials. Chem. Mater., 1996, 8, 1770–1783.
  • Wu, L., Mendoza-Garcia, A., Li, Q. and Sun, S., Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev., 2016, 116, 10473–10512.
  • Daniel, M.-C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104, 293–346.
  • Talapin, D. V., Lee, J.-S., Kovalenko, M. V. and Shevchenko, E. V., Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev., 2009, 110, 389–458.
  • Ganteför, G. and Eberhardt, W., Localization of 3d and 4d electrons in small clusters: the ‘ischolar_mains’ of magnetism. Phys. Rev. Lett., 1996, 76, 4975.
  • Frenkel, J. and Dorfman, J., Spontaneous and induced magnetisation in ferromagnetic bodies. Nature, 1930, 126, 274–275.
  • Kittel, C., Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev., 1946, 70, 965.
  • Kneller, E. and Luborsky, F., Particle size dependence of coercivity and remanence of single‐domain particles. J. Appl. Phys., 1963, 34, 656–658.
  • Morales, M. P. et al., Surface and internal spin canting in  -Fe2O3 nanoparticles. Chem. Mater., 1999, 11, 3058–3064.
  • Nealon, G. L., Donnio, B., Greget, R., Kappler, J.-P., Terazzi, E. and Gallani, J.-L., Magnetism in gold nanoparticles. Nanoscale, 2012, 4, 5244–5258.
  • Crespo, P. et al., Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett., 2004, 93, 087204.
  • Lu, A. H., Salabas, E. L. and Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46, 1222–1244.
  • Bussian, D. A., Crooker, S. A., Yin, M., Brynda, M., Efros, A. L. and Klimov, V. I., Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nat. Mater., 2009, 8, 35–40.
  • Beaulac, R., Schneider, L., Archer, P. I., Bacher, G. and Gamelin, D. R., Light-induced spontaneous magnetization in doped colloidal quantum dots. Science, 2009, 325, 973–976.
  • Chattopadhyay, S., Kelly, S. D., Shibata, T., Viswanatha, R., Balasubramanian, M., Stoupin, S., Segre, C. U. and Sarma, D. D., EXAFS studies of nanocrystals of Zn1–xMnxO: a dilute magnetic semiconductor oxide system. X-Ray Absorpt. Fine Struct., 2007, 882, 809–811.
  • Yuhas, B. D., Fakra, S., Marcus, M. A. and Yang, P., Probing the local coordination environment for transition metal dopants in zinc oxide nanowires. Nano Lett., 2007, 7, 905–909.
  • Segura-Ruiz, J., Martinez-Criado, G., Chu, M., Geburt, S. and Ronning, C., Nano-X-ray absorption spectroscopy of single Co-implanted ZnO nanowires. Nano Lett., 2011, 11, 5322–5326.
  • Dalpian, G. M. and Chelikowsky, J. R., Self-purification in semiconductor nanocrystals. Phys. Rev. Lett., 2006, 96, 226802.
  • Pradhan, N., Goorskey, D., Thessing, J. and Peng, X., An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc., 2005, 127, 17586–17587.
  • Peng, X., Wickham, J. and Alivisatos, A., Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: ‘focusing’ of size distributions. J. Am. Chem. Soc., 1998, 120, 5343–5344.
  • Karan, N. S., Sarkar, S., Sarma, D. D., Kundu, P., Ravishankar, N. and Pradhan, N., Thermally controlled cyclic insertion/ejection of dopant ions and reversible zinc blende/wurtzite phase changes in ZnS nanostructures. J. Am. Chem. Soc., 2011, 133, 1666–1669.
  • Chen, D., Viswanatha, R., Ong, G. L., Xie, R., Balasubramaninan, M. and Peng, X., Temperature dependence of ‘elementary processes’ in doping semiconductor nanocrystals. J. Am. Chem. Soc., 2009, 131, 9333–9339.
  • Saha, A., Shetty, A., Pavan, A., Chattopadhyay, S., Shibata, T. and Viswanatha, R., Uniform doping in quantum-dots-based dilute magnetic semiconductor. J. Phys. Chem. Lett., 2016, 7, 2420– 2428.
  • Sharma, P. et al., Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater., 2003, 2, 673–677.
  • Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U. and Rao, C. N. R., Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B, 2006, 74, 161306.
  • Jana, S., Srivastava, B. B., Jana, S., Bose, R. and Pradhan, N., Multifunctional doped semiconductor nanocrystals. J. Phys. Chem. Lett., 2012, 3, 2535–2540.
  • Bogle, K. A. et al., Co : CdS diluted magnetic semiconductor nanoparticles: radiation synthesis, dopant−defect complex formation, and unexpected magnetism. Chem. Mater., 2007, 20, 440–446.
  • Giribabu, G., Murali, G., Reddy, D. A., Liu, C. and Vijayalakshmi, R., Structural, optical and magnetic properties of Co-doped CdS nanoparticles. J. Alloys Comp., 2013, 581, 363–368.
  • Viswanatha, R., Naveh, D., Chelikowsky, J. R., Kronik, L. and Sarma, D. D., Magnetic properties of Fe/Cu Co-doped ZnO nanocrystals. J. Phys. Chem. Lett., 2012, 3, 2009–2014.
  • Tandon, B., Yadav, A. and Nag, A., Delocalized electrons mediated magnetic coupling in Mn–Sn codoped In2O3 nanocrystals: plasmonics shows the way. Chem. Mater., 2016, 28, 3620– 3624.
  • Pandey, A., Brovelli, S., Viswanatha, R., Li, L., Pietryga, J., Klimov, V. I. and Crooker, S., Long-lived photoinduced magnetization in copper-doped ZnSe–CdSe core-shell nanocrystals. Nat. Nanotechnol., 2012, 7, 792–797.
  • Radovanovic, P. V. and Gamelin, D. R., Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: demonstration of an isocrystalline core/shell synthetic method. J. Am. Chem. Soc., 2001, 123, 12207– 12214.
  • Sanders, G., Musfeldt, J. and Stanton, C., Tuning g-factors of core-shell nanoparticles by controlled positioning of magnetic impurities. Phys. Rev. B, 2016, 93, 075431.
  • MacKay, J., Becker, W., Spaek, J. and Debska, U., Temperature and magnetic-field dependence of the Mn2+4T1(4 G) → 6A1(6 S) photoluminescence band in Zn0.5Mn0.5Se. Phys. Rev. B, 1990, 42, 1743.
  • Viswanatha, R., Pietryga, J. M., Klimov, V. I. and Crooker, S. A., Spin-polarized Mn2+ emission from Mn-doped colloidal nanocrystals. Phys. Rev. Lett., 2011, 107, 067402.
  • Zheng, W. and Strouse, G. F., Involvement of carriers in the sizedependent magnetic exchange for Mn : CdSe quantum dots. J. Am. Chem. Soc., 2011, 133, 7482–7489.
  • Ochsenbein, S. T., Feng, Y., Whitaker, K. M., Badaeva, E., Liu, W. K., Li, X. and Gamelin, D. R., Charge-controlled magnetism in colloidal doped semiconductor nanocrystals. Nat. Nanotechnol., 2009, 4, 681–687.

Abstract Views: 305

PDF Views: 91




  • Recent Advances in Magnetic Ion-Doped Semiconductor Quantum Dots

Abstract Views: 305  |  PDF Views: 91

Authors

Mahima Makkar
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
Ranjani Viswanath
International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India

Abstract


Dilute magnetic semiconductor (DMS) quantum dots (QDs) have potential to be used as basic working components of spin-based electronic devices. Therefore it is important to study these materials from fundamental and technological viewpoints. Quantum confinement effects are known to enhance exchange interactions and induce properties that were previously not observed in bulk materials. In fact, properties are known to alter dramatically when dimensions are reduced to nanometre size regime. In this review we briefly discuss the recent advances in chemical (synthetic) and physical (properties) aspects of DMS QDs. We first discuss the various issues involved in the synthesis of DMS QDs followed by a discussion of the solutions obtained so far. We then discuss the interesting properties of DMS QDs with emphasis on their magnetic, magneto-optical and magneto-electrical properties arising from the cooperative effects of spinexchange interactions.

Keywords


Dilute Magnetic Semiconductors, Quantum Dots, Magnetic Circular Dichroism, Spintronics.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi07%2F1421-1429