Open Access
Subscription Access
Oxalic Acid/Oxalates in Plants:From Self-Defence to Phytoremediation
Oxalic acid and oxalates are produced and present in plants in different amounts. Insoluble calcium oxalate plays a key role in regulating calcium concentration, which is important in the functioning of guard cells. Oxalates provide tolerance to aluminium toxicity to plants growing in acid soils. Both oxalic acid and calcium oxalate provide self-defence against insect pests and grazing animals. Oxalates are involved in phytoremediation of soils rendered toxic by heavy metals, like lead, cadmium, zinc, etc.
Keywords
Aluminium Toxicity, Calcium Oxalate, Oxalic Acid, Phytoremediation.
User
Font Size
Information
- Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2005, pp. 17624/28029.
- Gmelin, L. and Watts, H., Handbook of Chemistry, Cavendish Society, London, UK, 1855, vol. 9, p. 111.
- Franceschi, V. R. and Nakata, P. A., Calcium oxalate in plants: formation and function. Annu. Rev. Plant Biol., 2005, 56(1), 41– 71.
- Chang, C. C. and Beevers, H., Biogenesis of oxalate in plant tissues. Plant Physiol., 1968, 43, 1821–1828.
- Duttan, C. M. V. and Evans, C. S., Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol., 1996, 42, 881–895.
- Kostman, T. A., Tarlyn, N. M., Loewus, F. A. and Franceschi, V. R., Biosynthesis of l-ascorbic acid and conversion of carbons 1 and 2 of l-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol., 2001, 125, 634– 640.
- Xu, H. W., Ji, X. M., He, Z. H., Shi, W. P. H., Niu, J. K., Li, B. S. and Peng, X. X., Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J. Exp. Bot., 2006, 57, 1899–1908.
- Yu, L. et al., Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J. Exp. Bot., 2010, 61(6), 1625–1634.
- Calistan, M., The metabolism of oxalic acid. Turk. J. Zool., 2000, 24, 103–106.
- Webb, M. A., Cavaletto, J. M., Carpita, N. C., Lopez, L. E. and Amott, H. J., The intravacuolar organic matrix associated with calcium oxalate crystals in the leaves of Vitis. Plant J., 1995, 7, 633–648.
- Ruiz, L. P. and Mansfield, T. A., A postulated role for calcium oxalate in the regulation of calcium ion in the vicinity of stomatal guard cells. New Phytol., 1994, 127, 473–781.
- Helper, P. K. and Wayne, R. O., Calcium and plant development. Annu. Rev. Plant Physiol., 1985, 36, 397–439.
- Franceschi, V. R., Calcium oxalate formation is a rapid reversal process in Lemma minor. Protoplasma, 1989, 148, 130–137.
- Korth, K. L. et al., Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol., 2006, 141, 188–195.
- Nakata, P. A., Plant calcium oxalate crystal formation and its impact on human health. Front. Biol., 2012, 7(3), 254–266.
- Yoshihara, T., Sogana, K., Pathak, M. D., Juliano, B. O. and Sakamura, S., Oxalic acid as a sucking inhibitor of the brown plant hopper (Delphacidae, Homoptera). Entomol. Exp. Appl., 1980, 27, 149–152.
- Libert, B. and Franceschi, V. R., Oxalate in crop plants. J. Agric. Food Chem., 1987, 35, 926–938.
- Rahman, M. M., Abdullah, R. B. and Wan Khadijah, W. E., A review of oxalate poisoning in domestic animals: tolerance and performance aspects. J. Anim. Physiol. Anim. Nutr., 2013, 97(4), 605–614.
- Sidhu, P. K., Joshi, D. V. and Srivastava, A. K., Oxalate toxicity in ruminants fed over grown Napier grass (Pennisetum purpurea). Indian J. Anim. Nutr., 1996, 13, 181–183.
- James, P. A., Halogeton poisoning in livestock. J. Nat. Toxins, 2012, 8, 395–403.
- Thurston, E. L., Morphology, fine structure and ontogeny of the stinging emergence of Tragia ramosa and T. saxicola (Euphorbiaceae). Am. J. Bot., 1976, 63, 710–718.
- Park, S. H., Doege, S. J., Nakata, P. A. and Korth, K. L., Medicago tranculata-derived calcium oxalate crystals have a negative impact on chewing insect performance via the physical properties. Entomol. Exp. Appl., 2009, 131(2), 208–215.
- Monje, P. V. and Baran, E. J., Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol., 2002, 128(2), 707–713.
- Hartl, W. P. et al., Diversity of calcium oxalate crystals in Cactaceae. Can. J. Bot., 2007, 85(5), 501–517.
- Nakata, P. A., An assessment of engineered calcium oxalate formation on plant growth and development as a step toward evaluating enhance plant defense. PLoS ONE, 2015, 10(10), e0141982; doi:10:1371/journal.pone.0141982.
- Maxwell, D. P. and Bateman, D. F., Influence of carbon source and pH on oxalate accumulation in culture filtrates of Sclerotium rolfsii. Phytopathology, 1968, 58, 1351–1355.
- Noyes, R. D. and Hancock, J. G., Role of oxalic acid in the Sclerotinia wilt of sunflower. Physiol. Plant Pathol., 1981, 18, 123– 132.
- Kim, K. S., Min, J. Y. and Dickman, M. B., Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol. Plant Microbe Interact, 2008, 21, 605–612.
- Dickman, M. B. and de Figueiredo, P., Comparative pathobiology of fungal pathogens of plants and animals. PLoS Pathog., 2011, 7(12), e1002324.
- Kamprath, E. J., Exchangeable aluminum as a criterion for liming leached mineral soils. Soil Sci. Soc. Am. Proc., 1970, 34, 252–254.
- Taylor, G. J., Current views of the aluminum stress response: the physiological basis of tolerance. Curr. Top. Plant Biochem. Physiol., 1991, 10, 57–93.
- Foy, C. D., Soil chemical factors limiting plant growth. Adv. Soil Sci., 1992, 19, 97–199.
- Prasad, R. and Power, J. F., Soil Fertility Management for Sustainable Agriculture, CRC-Lewis, Boca Raton, FL, USA, 1997, p. 356.
- Morita, A., Yanagisawa, O., Takatsu, S., Maeda, S. and Hiradate, S., Mechanism for the detoxification of aluminum in ischolar_mains of tea plant (Camellia sinensis (L.) Kuntze). Phytochemistry, 2008, 69, 147–153.
- Morita, A., Yanagisawa, O., Maeda, S., Takatsu, S. and Ikka, S., Tea plant (Camellia sinensis L.) ischolar_mains secrete oxalic acid and caffeine into medium containing aluminum. Soil Sci. Plant Nutr., 2011, 57, 796–802.
- Ma, J. F., Hiradate, S. and Matsumoto, H., Detoxifying aluminum with buckwheat. Nature, 1997, 390, 569–570.
- Ma, J. F., Hiradate, S. and Matsumoto, H., High aluminum resistance in buckwheat. Oxalic acid detoxifies aluminum internally. Plant Physiol., 1998, 117, 753–759.
- Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J. and Gadd, G. M., Role of oxalic acid over excretion in transformations of toxic metal minerals by Beauveria caledonica. Appl. Environ. Microbiol., 2005, 71, 371–381.
- Leitenmaier, B. and Küpper, H., Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci., 2013, 4, 374; doi:org/10.3389/fpls.2013.00374.
- Boyd, R. S., Davis, M. A., Wall, M. A. and Balkwill, K., Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae).
- Chemoecology, 2002, 12, 91–97.
- Tao, Q., Hou, D. and Li, T., Oxalate secretion from the ischolar_main apex of Sedum alfredii contributes to hyperaccumulation of cadmium. Plant Soil, 2016, 398(1), 139–152.
- McBride, M. B., Richards, B. K., Steenhuis, T., Russo, J. J. and Sauvé, S., Mobility and solubility of toxic metals and nutrients in soil fifteen years after sewage sludge application. Soil Sci., 1997, 162, 487–500.
- Buchauer, M. J., Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper, and lead. Environ. Sci. Technol., 1973, 7, 131–135.
- Ghosh, M. and Singh, S. P., A review on phytoremediation of heavy metals and utilization of its by-products. Appl. Ecol. Environ. Res., 2005, 3(1), 1–18.
- Mitikova, T., Prentovic, T. and Markoski, M., Phytoremediation of soils contaminated with heavy metals in the vicinity of smelters for lead and zinc in Velas. Agric. Conspec. Sci., 2015, 80(1), 53– 57.
- Wuana, R. A. and Okieimen, F. E., Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol., 2011, 402647; http://dx.doi.org/10.5402/2011/402647.
- Tripathi, R. D. et al., Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol., 2007, 25(4), 158– 165.
- Mirza, N., Mahmood, Q., Shah, M. M., Parvez, A. and Sultan, S., Plants as vectors to reduce environmental toxic content. Sci. World J., 2014, 921581, p. 11.
- Ng, J. C., Wang, J. and Shraim, A., A global health problem caused by arsenic from natural sources. Chemosphere, 2003, 52(9), 1353–1359.
- Chen, C. J., Chen, C. W., Wu, M. M. and Kuo, T. L., Cancer potential in liver, lung, bladder and kidney due to ingested arsenic in drinking water. Br. J. Cancer, 1992, 55(5), 886–892.
- Chintakovid, W., Visoothivisthy, P., Khokialtiwong, S. and Lauengsuchonkul, S., Potential of the hybrid marigolds for arsenic phtoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere, 2008, 70(8), 1532–1537.
Abstract Views: 517
PDF Views: 141