Open Access Open Access  Restricted Access Subscription Access

Mineralogy of the Manipur Ophiolite Belt, North East India:Implications for Mid-Oceanic Ridge and Supra-Subduction Zone Origin


Affiliations
1 Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India
2 School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China
 

Mineralogical studies on the mantle and crustal sections of the Manipur Ophiolite Belt (MOB) lead to important findings pertaining to its genesis and controlling tectonic milieu. The wide compositional gap in the Cr# and Mg# content of spinel in the mantle peridotites of MOB implies upper mantle melting in two different tectonic settings. The tectonic discrimination diagrams based on spinel chemistry indicate a midoceanic ridge (MOR) origin for the high-Al spinel peridotites and a supra-subduction zone origin for the high-Cr spinel peridotites. The pyroxenite mantle dyke, ultramafic cumulate and pillow-basalt record temperature in the range of 600-1030°C, 600-800°C and 700-1005°C respectively. Plotting of clinopyroxene composition of pillow-basalt in the TiO2-Na2O-SiO2/100 (wt%) tectonic discrimination diagram, implies a subduction-related origin of the basalts. Experimental studies on the serpentine stability indicate that it was dominantly affected by high temperature-low deformation setting.

Keywords

Mineralogical Study, Ophiolite Belt, Pyroxenite Mantle Dyke, Pyroxene Thermometry.
User
Notifications
Font Size

  • Acharyya, S. K., Collisional emplacement history of the NagaAndaman ophiolites and the position of the eastern Indian suture. J. Asian Earth Sci., 2007, 29, 229–242.
  • Joshi, A. and Vidyadharan, K. T., Lithostratigraphy of the NagaManipur Hills (Indo-Burma Range) ophiolite Belt from Ukhrul district, Manipur, India. Himalayan J. Sci., 2008, 5(7), 73–74.
  • Singh, A. K., High-Al chromian spinel in ultramafic rocks of Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt: implication for petrogenesis and geotectonic setting. Curr. Sci., 2009, 96(7), 973–978.
  • Devi, L. D. and Singh, I., Geochemical study of peridotites from the Manipur Ophiolite Complex, Northeast India with special reference to their PGE concentration. J. Geol. Soc. India, 2011, 77, 273–279.
  • Ningthoujam, P. S., Dubey, C. S., Guillot, S., Fagio, A. S. and Shukla, D. P., Origin and serpentinization of ultramafic rocks of Manipur Ophiolite Complex in the Indo-Myanmar subduction zone, Northeast India. J. Asian Earth Sci., 2012, 50, 128–140.
  • Singh, A. K., Singh, I., Devi, L. D. and Singh, R. K. B., Geochemistry of Mid-Ocean ridge Mafic intrusive from the Manipur Ophiolitic Complex, Indo-Myanmar Orogenic Belt, NE India. J. Geol. Soc. India, 2012, 80, 231–240.
  • Singh, A. K., Petrology and geochemistry of Abyssal peridotites from the Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt, Northeast India: Implication for melt generation in midoceanic ridge environment. J. Earth Sci., 2013, 66, 258–276.
  • Singh, I., Devi, L. D. and Chanu, Th. Y., Petrological and geochemical study of serpentinized peridotites from the southern part of Manipur Ophiolite Complex, Northeast India. J. Geol. Soc. India, 2013, 82, 121–132.
  • Ghose, N. C., Chatterjee, N. and Fareeduddin, A Petrographic Atlas of an Ophiolite: An Example from the Eastern India-Asia Collision Zone, Springer, New Delhi, 2014, p. 234.
  • Ghosh, B., Ray, J. and Morishita, T., Grain-scale plastic deformation of chromite from podiform chromitite of the Naga–Manipur Ophiolite belt, India: implication to mantle dynamics. Ore Geol. Rev., 2014, 56, 199–208.
  • Pal, T., Bhattarcharya, A., Nagendran, G., Yanthan, N. M., Singh, R. and Raghumani, N., Petrogenesis of chromites from the Manipur belt, NE India: evidence for a supra-subduction zone setting prior to Indo-Myanmar collision. Mineral. Petrol., 2014, 108, 713–726.
  • Khogenkumar, S., Singh, A. K., Singh, R. K. B., Khanna, P. P., Singh, N. I. and Singh, W. I., Coexistence of MORB and OIB-type mafic volcanics in the Manipur Ophiolite Complex, IndoMyanmar Orogenic Belt, Northeast India: Implication for heterogeneous mantle source at the spreading zone. J. Asian Earth Sci., 2016, 116, 42–58.
  • Gansser, A., The significance of the Himalayan suture zone in the alpine Himalayan Region (eds Tater, J. M.), Tectonophysics, 1980, 62, 37–52.
  • Mitchell, A. H. G., Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet. J. Geol. Soc. London, 1981, 138, 109–122.
  • Acharyya, S. K., Ray, K. K. and Roy, D. K., Tectono-stratigraphy and emplacement history of the ophiolite assemblage from the Naga Hills and Andaman Island arc India. J. Geol. Soc. India, 1989, 33, 4–18.
  • Ghose, N. C., Agarwal, O. P. and Singh, R. N., Geochemistry of the ophiolite belt of Nagaland, N.E. India. In Ophiolite and Indian Plate Margin (eds Ghose, N. C. and Varadarajan, S.), Sumna Publ., Patna, 1986, pp. 241–293.
  • Acharyya, S. K., Ray, K. K. and Roy, D. K., Tectono-stratigraphy and emplacement history of the ophiolite assemblage from the Naga Hills and Andaman Island Arc, India. J. Geol. Soc. India, 1989, 33(1), 4–18.
  • Agarwal, O. P. and Kacker, R. N., Nagaland ophiolite, India: a subduction zone ophiolite complex in Tethyan orogenic belt, In Ophiolites (eds Panayiotoau, A.), Proceedings of International Ophiolite Symposium, Cyprus, 1979, pp. 454–461.
  • Bhattacharjee, C. C., The ophiolite of northeast India – a subduction zone ophiolite complex of the Indo-Burman orogenic belt. Tectonophysics, 1991, 191, 213–222.
  • Nandy, D. R., Geodynamics of Northeastern India and the Adjoining Regions, ACB Publications, Block-A Lake Town, Kolkata, India, 2001, p. 757.
  • Ghose, N. C., Agarwal, O. P. and Chatterjee, N., Geological and mineralogical study of eclogite and glucophane schists in the Naga Ophiolite, Northeast India. Island Arc, 2010, 10, 336–356.
  • Puga, E., Nieto, J. M., Diaz de Federico, A., Bodinier, J. L. and Morten, L., Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos, 1999, 49, 23–56.
  • Peltonen, P., Kontinen, A. and Huhma, H., Petrogenesis of the mantle sequence of Jormua Ophiolite (Finland): Melt migration in the Upper Mantle during Paleoproterozoic continental break-up. J. Petrol., 1998, 39(2), 297–329.
  • Morimoto, N. and Kitamura, M., Q–J diagram for classification of pyroxenes. J. Japanese Assoc. Mineral., Petrol. Ecol. Geol., 1983, 78, 141.
  • Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A. and Zussman, J., Nomenclature of pyroxenes. Am. Mineral., 1988, 73, 1123–1133.
  • Beccaluva, L., Macciotta, G., Piccardo, G. B. and Zeda, O., Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chem. Geol., 1989, 77(3), 165–182.
  • D’Antonio, M. and Kristensen, M. B., Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 196, Site1200): inferences for the serpent inization of the Mariana forearc mantle. Min. Mag., 2004, 68, 887–904.
  • Lindsley, D. H., Pyroxene thermometry. Am. Mineral., 1983, 68, 477–493.
  • Nimis, P., A clinopyroxene geobarometer for basaltic systems based on crystal–structure modeling. Contrib. Mineral. Petrol., 1995, 121, 115–125.
  • Barnes, S. J. and Roeder, P. L., The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol., 2001, 42, 2279–2302.
  • Ohara, Y., Stern, R. J., Ishii, T., Yurimoto, H. and Yamazaki, T., Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin. Contrib. Mineral. Petrol., 2002, 143, 1–18.
  • Bonatti, E. and Michael, P. J., Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet. Sci., 1989, 91, 297–311.
  • Arai, S., Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem. Geol., 113, 191–204.
  • Varfalvy, V. and Hebert, R., Petrology and geochemistry of the pyroxenite dykes in the upper mantle peridotites of the Northern Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland: implication for the genesis of boninitic and related magmas. Can. Mineral., 1997, 135, 543–570.
  • Schwartz, S. et al., Pressure-temperature estimates of the lizardite/ antigorite transition in high pressure serpentinites. Lithos, 2013, 178, 197–210.
  • Saccani, E. and Photiades, A., Mid-ocean ridge and suprasubduction affinities in the Pindos ophiolites (Greece): implication for magma genesis in a forearc setting. Lithos, 2004, 73, 229–253.
  • Dick, H. J. B. and Bullen, T., Cr-spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 1984, 86, 54–76.
  • Jan, M. Q. and Windley, B. F., Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, Northwest Pakistan. J. Petrol., 1990, 31, 667–715.
  • Arai, S., Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Mag., 1992, 56, 173–184.
  • Ishii, T., Robinson, P. T., Maekawa, H. and Fisk, R., Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125, Proceedings of the Ocean Drilling Program, Scientific Results, 1992, 125, 445–485.
  • Hirose, K. and Kawamoto, T., Hydrous partial melting of lherzolite at 1 Gpa: the effect of H2O on the genesis of basaltic magmas. Earth Planet. Sci. Lett., 1995, 133, 463–473.
  • Kamenetsky, V. S., Crawford, A. J. and Meffre, S., Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol., 2001, 42, 655–671.

Abstract Views: 250

PDF Views: 100




  • Mineralogy of the Manipur Ophiolite Belt, North East India:Implications for Mid-Oceanic Ridge and Supra-Subduction Zone Origin

Abstract Views: 250  |  PDF Views: 100

Authors

Thungyani N. Ovung
Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India
Jyotisankar Ray
Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India
Xueming Teng
School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China
Biswajit Ghosh
Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India
Madhuparna Paul
Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India
Proloy Ganguly
Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India
Saradee Sengupta
Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India
Supriyo Das
Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, India

Abstract


Mineralogical studies on the mantle and crustal sections of the Manipur Ophiolite Belt (MOB) lead to important findings pertaining to its genesis and controlling tectonic milieu. The wide compositional gap in the Cr# and Mg# content of spinel in the mantle peridotites of MOB implies upper mantle melting in two different tectonic settings. The tectonic discrimination diagrams based on spinel chemistry indicate a midoceanic ridge (MOR) origin for the high-Al spinel peridotites and a supra-subduction zone origin for the high-Cr spinel peridotites. The pyroxenite mantle dyke, ultramafic cumulate and pillow-basalt record temperature in the range of 600-1030°C, 600-800°C and 700-1005°C respectively. Plotting of clinopyroxene composition of pillow-basalt in the TiO2-Na2O-SiO2/100 (wt%) tectonic discrimination diagram, implies a subduction-related origin of the basalts. Experimental studies on the serpentine stability indicate that it was dominantly affected by high temperature-low deformation setting.

Keywords


Mineralogical Study, Ophiolite Belt, Pyroxenite Mantle Dyke, Pyroxene Thermometry.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi10%2F2122-2129