Open Access Open Access  Restricted Access Subscription Access

Early–Middle Eocene Exhumation of the Trans-Himalayan Ladakh Batholith, and the India–Asia Convergence


Affiliations
1 Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247 667, India
2 CSIR-Central Building Research Institute, Roorkee 247 667, India
3 Sri Sri University, Cuttack 754 006, India
 

Very fast Early–Middle Eocene exhumation of theTrans-Himalayan Ladakh Batholith (LB) is revealedby new Rb–Sr biotite and zircon fission-track agesalong with the already published ages on these minerals.Exhumation peaked at 3.5 ± 0.9 mm/a between50–45 Ma (40Ar/39Ar hornblende ages) and 48–45 Ma(Rb–Sr biotite ages) as a consequence of the India–Asia convergence. It was followed by deceleration at arate of 1.2 ± 0.2 mm/a until 43–42 Ma (zircon FT ages),like the Deosai batholith in the west. Exhumationrates finally decreased during Oligocene to a minimumof ~0.1 mm/a before a mild late Miocene–Holocene acceleration. Lower-Middle Eocene exhumationof the LB was tectonically controlled by slabbreak-off of the Neo-Tethys oceanic lithosphere and underthrusting of the Himalayan Metamorphic Belt.

Keywords

Early–Middle Eocene Exhumation, Fission Track, Ladakh Batholith, Tectonics.
User
Notifications
Font Size

  • Platt, J. P., Exhumation of high-pressure metamorphic rocks: a review of concepts and processes. Terra Nova, 1993, 5, 119–133.
  • Hodges, K. V., Parrish, R. R., Housh, T. B., Lux, D. R., Burchfiel, B. C., Royden, L. H. and Chen, Z., Simultaneous Miocene extension and shortening in the Himalayan orogen. Science, 1992, 258, 1446–1470.
  • Ring, U., Horizontal contraction or horizontal extension: heterogeneous Late Eocene and Early Oligocene general shearing during blueschist and greenschist-facies metamorphism at the PennineAustroalpine boundary zone in the Western Alps. Geol. Rundsch., 1995, 84, 843–859.
  • Ring, U., Brandon, M. T., Lister, G. S. and Willet, S., Exhumation processes. In Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (eds Ring, U. et al.), Geol. Soc. London, Spec. Publ., 1999, vol. 154, 1–28.
  • Wobus, C. W., Hodges, K. V. and Whipple, K. X., Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology, 2003, 31, 861–864.
  • Searle, M. P. et al., The closing of the Tethys and the tectonics of the Himalaya. Geol. Soc. Am. Bull., 1987, 98, 678–701.
  • Jain, A. K., Kumar, D., Singh, S., Kumar, A. and Lal, N., Timing, quantification and tectonic modeling of Pliocene Quaternary movements in the NW Himalaya: evidences from fission track dating. Earth Planet. Sci. Lett., 2000, 179, 437–451.
  • Montomoli, C., Carosi, R. and Salvatore, I., Tectonometamorphic discontinuities in the Greater Himalayan sequence: a local or a regional feature. In Tectonics of the Himalaya (eds Mukherjee, S. et al.), Geol. Soc. London Spec. Publ., 2014, 412, 25–41.
  • Thiede, R. C. and Ehlers, T. A., Large spatial and temporal variations in Himalayan denudation. Earth Planet. Sci. Lett., 2013, 371–372, 278–293.
  • Patel, R. C., Singh, S., Asokan, A., Manickavasagam, R. M. and Jain, A. K., Extensional tectonics in the collisional Zanskar Himalayan belt. In Himalayan Tectonics (eds Treloar, P. J., Searle, M. P.), Geol. Soc. London, Spec. Publ., 1993, 74, 445–459.
  • Hodges, K. V., Bowring, S. A., Davidek, K. L., Hawkins, D. and Krol, M., Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 1998, 26, 483–486.
  • Thiede, R. C., Arrowsmith, J. R., Bookhagen, B., McWilliams, M. O., Sobel, E. R. and Strecker, M. R., From tectonically to erosionally controlled development of the Himalayan orogen. Geology, 2005, 33, 689–692.
  • Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thoni, M. and Trommsdorff, V., Magmatism and metamorphism in the Ladakh Himalaya (the Indus-Tsangpo suture zone). Earth Planet. Sci. Lett., 1982, 60, 253–292.
  • Hodges, K. V., Tectonics of the Himalaya and southern Tibet from two decades perspective. Geol. Soc. Am. Bull., 2000, 112, 324–350.
  • Weinberg, R. F. and Dunlap, J., Growth and deformation of the Ladakh Batholith, Northwest Himalayas: Implications for timing of continental collision and origin of calcalkaline batholith. J. Geol., 2000, 108, 303–320.
  • Rolland, Y., Pecher, A. and Picard, C., Middle Cretaceous back-arc formation and arc evolution along the Asian margin: the Shyok Suture Zone in Northern Ladakh (NW Himalaya). Tectonophysics, 2000, 325, 145–173.
  • White, L. T., Ahmad, T., Ireland, T. R., Lister, G. and Forster, M. A., Deconvolving episodic age spectra from zircons of the Ladakh Batholith, northwest Indian Himalaya. Chem. Geol., 2011, 289, 179–196.
  • Dunlap, W. J., Weinberg, R. F. and Searle, M. P., Karakoram fault zone rocks cool in two phases. J. Geol. Soc. London, 1998, 155, 903–912.
  • Clift, P. D., Carter, A., Krol, M. and Kirby, E., Constraints on India-Eurasia collision in the Arabian sea region taken from the Indus Group, Ladakh Himalaya, India. In The Tectonic and Climatic Evolution of the Arabian Sea Region (eds Clift, P. D.), Geol. Soc. London, Spec. Publ., 2002, 195, 97–116.
  • van der Beek, P., Van Melle, J., Guillot, S., Pêcher, A., Reiners, P. W., Nicolescu, S. and Latif, M., Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geosci., 2009, 2, 364–368.
  • Kirstein, L. A., Foeken, J. P. T., van der Beek, P., Stuart, F. M. and Phillips, R. J., Cenozoic unroofing history of the Ladakh Batholith, western Himalaya, constrained by thermochronology and numerical modelling. J. Geol. Soc., London, 2009, 166, 1–12; doi:10.1144/0016-76492008-107.
  • Kirstein, L. A., Sinclair, H., Stuart, F. M. and Dobson, K., Rapid early Miocene exhumation of the Ladakh batholith, western Himalaya. Geology, 2006, 34, 1049–1052.
  • Reiners, P. W., Todd A. E. and Zeitler, P. K., Past, Present, and future of thermochronology. Rev. Mineral. Geochem., 2005, 58, 1–18.
  • Raz, U. and Honneger, K., Magmatic and tectonic evolution of the Ladakh block from field studies. Tectonophysics, 1989, 161, 107–118.
  • Thakur, V. C., Geology of the Western Himalaya, Pergamon Press, Oxford, 1993, p. 355.
  • Scharer, U., Hamet, J. and Allegre, C. J., The Transhimalaya (Gangdese) plutonism in the Ladakh region: a U–Pb and Rb–Sr study. Earth Planet. Sci. Lett., 1984, 67, 327–339.
  • Debon, F., Le Fort, P., Sheppard, S. M. F. and Sonet, J., The four plutonic belts of the Transhimalaya-Himalaya: a chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section. J. Petrol., 1986, 27, 219–250.
  • Kumar, S., Bora, S., Sharma, U. K., Yi, K. and Kim, N., Early Cretaceous subvolcanic calc-alkaline granitoid magmatism in the Nubra-Shyok valley of the Shyok Suture Zone, Ladakh Himalaya, India: evidence from geochemistry and U–Pb SHRIMP zircon geochronology. Lithos, http://dx.doi.org/10.1016/j.lithos.2016.11.019.
  • Gansser, A., The significance of the Himalayan suture zone. Tectonophysics, 1980, 62, 37–52.
  • Le Fort, P., Himalayas: the collided range, present knowledge of the continental arc. Am. J. Sci., 1975, 275, 1–44.
  • Rolland, Y., Picard, C., Pêcher, A., Lapierre, H., Bosch, D. and Keller, F., The cretaceous Ladakh arc of NW Himalaya – slab melting and melt – mantle interaction during fast northward drift of Indian Plate. Chem. Geol., 2002, 182, 139–178.
  • Yin, A., Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev., 2006, 76, 1–131.
  • Jain, A. K., Singh, S. and Gupta, K. R., A Late Cretaceous Karakoram Shear Zone and its reactivation during the Late Cenozoic. Int. Assoc. Gondwana Res. Mem., 2007, 10, 77–88.
  • Jain, A. K. and Singh, S., Geology and Tectonics of the Southeastern Ladakh and Karakoram. Geological Society of India, Bangalore, 2009, pp. 179.
  • Jain, A. K., Continental subduction in the NW-Himalaya and Trans-Himalaya. Ital. J. Geosci., 2016, 135(2), doi: 10.3301/IJG.2015.43.
  • Singh, S., Kumar R., Barley, M. and Jain, A. K., U–Pb SHRIMP ages and depth of emplacement of Ladakh Batholith, NW Himalaya. J. Asian Earth Sci., 2007, 30, 490–503.
  • St-Onge, M. R., Rayner, N. and Searle, M. P., Zircon age determinations for the Ladakh batholith at Chumathang Northwest India: implications for the age of the India–Asia collision in the Ladakh Himalaya. Tectonophysics, 2010, 495, 171–183.
  • Jain, A. K., When did India–Asia collide and make the Himalaya? Curr. Sci., 2014, 106(2), 254–266.
  • Jain, A. K., Singh, S., Manickavasagam, R. M., Joshi, M. and Verma, P. K., HIMPROBE Programme: Integrated studies on geology, petrology, geochronology and geophysics of the TransHimalaya and Karakoram. Mem. Geol. Soc. India, 2003, 53, 1–56.
  • Jain, A. K. and Singh, S., Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone: Constraints from field observations and U–Pb SHRIMP ages. Tectonophysics, 2008, 451(1–4), 186–205.
  • Maheo, G., Bertrand, H., Guillot, S., Villa, I. M., Keller, F. and Capiez, P., The south Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic origin with implication for the closure of the Neo-Tethys. Chem. Geol., 2004, 203, 273–303.
  • Ahmad, T., Tanaka, T., Sachan, H. K., Asahara, Y., Islam, R. and Khanna, P. P., Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: Implications for the Neo-Tethyan subduction along the Indus suture zone. Tectonophysics, 2008, 451, 206–224.
  • Leech, M. L., Singh, S. and Jain, A. K., Continuous metamorphic zircon growth and interpretation of U–Pb SHRIMP Dating: an example from the Western Himalaya. Int. Geol. Rev., 2007, 49, 313–328.
  • Guillot, S., Replumaz, A., Hattori, K. and Strzerzynski, P., Initial geometry of western Himalaya and ultrahigh pressure metamorphic evolution. J. Asian Earth Sci., 2007, 30, 557–564.
  • Kumar, R., Lal Nand, Singh Sandeep and Jain, A. K., Exhumation history of Trans-Himalayan Ladakh Batholith as constrained by fission track apatite and zircon ages. Curr. Sci., 2007, 92(4), 490–496.
  • Sorkhabi, R. B., Jain, A. K., Nishimura, S., Itaya, T., Lal, N., Manickavasagam, R. M. and Tagami, T., New age constraints on the cooling and unroofing history of the Trans Himalayan Ladakh batholith (Kargil area), N. W. India. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 1994, 103, 83–97.
  • Bouilhol, P., Jagoutz, O., Hanchar, J. M. and Dudas, F. O., Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett., 2013, 366, 163–175.
  • Schlup, M., Carter, A., Cosca, M. and Steck, A., Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission track ages: the Indus river-Tso Morari transect, NW Himalaya. J. Geol. Soc. London, 2003, 160, 385–399.
  • Bhutani, R., Pande, K. and Venkatesan, T. R., Tectono-thermal evolution of the India–Asia collision zone based on 40Ar–39Ar thermochronology in Ladakh. India. Proc. Indian Acad. Sci., 2004, 113, 737–754.
  • Clift, P. D., Shimizu, N., Laynge, G., Gaedicke, C., Schulter, H. U., Clark, M. and Amjad, S., Development of the Indus Fan and its significance for the erosional history of the western Himalaya and Karakoram. Geol. Soc. Am. Bull., 2001, 113, 1039–1051.
  • Sinclair, H. D. and Jaffey, N., Sedimentology of the Indus Group, Ladakh, Northern India: implications for the timing of initiation of paleo-Indus River. J. Geol. Soc. London, 2001, 158(1), 151–162.
  • Kohn, M. J. and Parkinson, C. D., Petrological case for Eocene slab breakoff during the Indo-Asian collision. Geology, 2002, 30(7), 591–594.
  • de Sigoyer, J. et al., Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morarieclogites. Geology, 2000, 28, 487–490.
  • Leech, M. L., Singh, S., Jain, A. K., Klemperer, S. L. and Manickavasagam R. M., Early, steep subduction of India beneath Asia required by early UHP metamorphism. Earth Planet. Sci. Lett., 2005, 234, 83–97.
  • Guillot, S., Maheo, G., de Sigoyer, J., Hattori, K. H. and Pêcher, A., Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 2008, 451, 225–241.

Abstract Views: 338

PDF Views: 108




  • Early–Middle Eocene Exhumation of the Trans-Himalayan Ladakh Batholith, and the India–Asia Convergence

Abstract Views: 338  |  PDF Views: 108

Authors

Rajeev Kumar
Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247 667, India
A. K. Jain
CSIR-Central Building Research Institute, Roorkee 247 667, India
Nand Lal
Sri Sri University, Cuttack 754 006, India
Sandeep Singh
Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247 667, India

Abstract


Very fast Early–Middle Eocene exhumation of theTrans-Himalayan Ladakh Batholith (LB) is revealedby new Rb–Sr biotite and zircon fission-track agesalong with the already published ages on these minerals.Exhumation peaked at 3.5 ± 0.9 mm/a between50–45 Ma (40Ar/39Ar hornblende ages) and 48–45 Ma(Rb–Sr biotite ages) as a consequence of the India–Asia convergence. It was followed by deceleration at arate of 1.2 ± 0.2 mm/a until 43–42 Ma (zircon FT ages),like the Deosai batholith in the west. Exhumationrates finally decreased during Oligocene to a minimumof ~0.1 mm/a before a mild late Miocene–Holocene acceleration. Lower-Middle Eocene exhumationof the LB was tectonically controlled by slabbreak-off of the Neo-Tethys oceanic lithosphere and underthrusting of the Himalayan Metamorphic Belt.

Keywords


Early–Middle Eocene Exhumation, Fission Track, Ladakh Batholith, Tectonics.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi06%2F1090-1098