Open Access Open Access  Restricted Access Subscription Access

Early Life Influences and Type-2 Diabetes – A Review


Affiliations
1 Public Health Foundation of India, 6th Floor, Plot 47, Sector 44, Gurgaon 122 002, India
2 Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, West Ansari Nagar, New Delhi 110 029, India
 

Early life factors encompassing parental, foetal and postnatal characteristics, have an important influence on individual disease risk. Of particular importance is the role of maternal lifetime nutrition and metabolic reserves, and the impact on offspring birth outcomes. Birth weight, in turn, affects disease risk in later life. Being born small and showing rapid weight gain during childhood are especially important risk determinants for impaired glucose tolerance, higher blood pressure, dyslipidaemia, overweight and obesity in later life. Postnatal growth patterns, socio-environmental factors and genetic influences thus act in concert to increase the predilection for chronic diseases, including type-2 diabetes.

Keywords

Birth Weight, Disease Risk, Maternal Nutrition, Type-2 Diabetes.
User
Notifications
Font Size

  • Piot, P. et al., Addressing the growing burden of noncommunicable disease by leveraging lessons from infectious disease management. J. Glob. Health, 2016, 6(1), 010304; http://www.ncbi.nlm.nih.gov/pubmed/26955469
  • Alwan, A. et al., Monitoring and surveillance of chronic noncommunicable diseases: progress and capacity in high-burden countries. Lancet, 2010, 376(9755), 1861–1868; http://www.ncbi.nlm.nih.gov/pubmed/21074258
  • Stratton, I. M. et al., Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 2000, 321(7258), 405–412; http://www.ncbi.nlm.nih.gov/pubmed/10938048
  • Ezzati, M., Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4??4 million participants. Lancet, 2016, 387(10027), 1513–1530.
  • Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U. and Shaw, J. E., Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 2014, 103, 137–149.
  • Jaacks, L. M. et al., Type 2 diabetes: a 21st century epidemic. Best Pract. Res. Clin. Endocrinol. Metab., 2016, 30(3), 331–343; http://linkinghub.elsevier.com/retrieve/pii/S1521690X16300161
  • Forouzanfar, M. H. et al., GBD 2013 Risk Factors Collaborators, Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet, 2015, 386(10010), 2287–323; http://www.ncbi.nlm.nih.gov/pubmed/26364544
  • International Diabetes Federation, IDF Diabetes Atlas, 2015, 7th edn; http://www.diabetesatlas.org/
  • Wells, J. C. K., Pomeroy, E., Walimbe, S. R., Popkin, B. M. and Yajnik, C. S., The elevated susceptibility to diabetes in India: an evolutionary perspective. Front. Public Health, 2016, 4, 145; http://journal.frontiersin.org/Article/10.3389/fpubh.2016.00145/abstract
  • World Health Organization, NCD global monitoring framework. WHO, Geneva, 2013; http://www.who.int/nmh/global_monitoring_framework/en/
  • Yajnik, C., Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult-onset disease. Proc. Nutr. Soc., 2000, 59(2), 257–265; http://www.ncbi.nlm.nih.gov/pubmed/10946794
  • Fall, C. H. D. et al., Size at birth, maternal weight, and type 2 diabetes in South India. Diabetic Med., 1998, 15(3), 220–227.
  • Hales, C. N. and Barker, D. J., The thrifty phenotype hypothesis. Br. Med. Bull., 2001, 60, 5–20; http://www.ncbi.nlm.nih.gov/pubmed/11809615
  • Lucas, A., Baker, B. A., Desai, M. and Hales, C. N., Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring. Br. J. Nutr., 1996, 76(4), 605–612; http://www.ncbi.nlm.nih.gov/pubmed/8942366
  • Barker, D. J. and Fall, C. H., Foetal and infant origins of cardiovascular disease. Arch. Dis. Child., 1993, 68(6), 797–799; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1029-380&tool=pmcentrez&rendertype=abstract
  • Joglekar, C. V. et al., Newborn size, infant and childhood growth, and body composition and cardiovascular disease risk factors at the age of 6 years: the Pune Maternal Nutrition Study. Int. J. Obes., 2007, 31(10), 1534–1544; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2358952&tool=pmcentrez&rendertype=abstract
  • Lawlor, D. A., Davey Smith, G. and Ebrahim, S., Association between leg length and offspring birth weight: partial explanation for the trans-generational association between birth weight and cardiovascular disease: findings from the British Women’s Heart and Health Study. Paediatr. Perinat. Epidemiol., 2003, 17(2), 148–155; http://www.ncbi.nlm.nih.gov/pubmed/12675781
  • Kuzawa, C. W. et al., Birth weight, postnatal weight gain, and adult body composition in five low and middle income countries. Am. J. Hum. Biol., 2012, 24, 5–13; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3541478&tool=pmcentrez&rendertype=abstract
  • Norris, S. et al., Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care, 2012, 35, 72–79.
  • Fall, C. and Osmond, C., Commentary: the developmental origins of health and disease: an appreciation of the life and work of Professor David J.P. Barker, 1938–2013. Int. J. Epidemiol., 2013, 42(5), 1231–1232; http://www.ncbi.nlm.nih.gov/pubmed/24159069
  • Paneth, N. and Susser, M., Early origin of coronary heart disease (the ‘Barker hypothesis’). BMJ, 1995, 310(6977), 411–412; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2548-810&tool=pmcentrez&rendertype=abstract
  • Gluckman, P. D. and Hanson, M. A., Maternal constraint of foetal growth and its consequences. Semin. Foetal Neonatal Med., 2004, 9(5), 419–425; http://www.ncbi.nlm.nih.gov/pubmed/15691778
  • Smith, G. D., Sterne, J., Tynelius, P., Lawlor, D. A. and Rasmussen, F., Birth weight of offspring and subsequent cardiovascular mortality of the parents. Epidemiology, 2005, 16(4), 563–569; http://www.ncbi.nlm.nih.gov/pubmed/15951676
  • Hypponen, E., Power, C. and Smith, G. D., Parental growth at different life stages and offspring birthweight: an intergenerational cohort study. Paediatr. Perinat. Epidemiol., 2004, 18, 168–177.
  • Sachdev, H. S. et al., Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. Am. J. Clin. Nutr., 2005, 82, 456–466.
  • Langley-Evans, S. C., Bellinger, L. and McMullen, S., Animal models of programming: early life influences on appetite and feeding behaviour. Matern. Child Nutr., 2005, 1(3), 142–148.
  • Armitage, J. A., Taylor, P. D. and Poston, L., Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J. Physiol., 2005, 565(Pt 1), 3–8; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1464498&tool=pmcentrez&rendertype=abstract
  • Poston, L. et al., Developmental programming and diabetes – the human experience and insight from animal models. Best Pract. Res. Clin. Endocrinol. Metab., 2010, 24(4), 541–552; http:// linkinghub.elsevier.com/retrieve/pii/S1521690X10000400
  • McMillen, I. C. and Robinson, J. S., Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev., 2005, 85(2), 571–633; http://www.ncbi.nlm.nih.gov/pubmed/15788706
  • Fowden, A. L., Giussani, D. A. and Forhead, A. J., Endocrine and metabolic programming during intrauterine development. Early Hum. Dev., 2005, 81(9), 723–734; http://www.ncbi.nlm.nih.gov/ pubmed/16085373
  • Roseboom, T., de Rooij, S. and Painter, R., The Dutch famine and its long-term consequences for adult health. Early Hum. Dev., 2006, 82(8), 485–491; http://www.ncbi.nlm.nih.gov/pubmed/16876341
  • Stanner, S. A. et al., Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ, 1997, 315, 1342–1348.
  • Adair, L. S. and Pollitt, E., Outcome of maternal nutritional supplementation: a comprehensive review of the Bacon Chow study. Am. J. Clin. Nutr., 1985, 41(5), 948–978; http://www.ncbi.nlm.nih.gov/pubmed/3993612
  • Rush, D., Stein, Z. and Susser, M., A randomized controlled trial of prenatal nutritional supplementation in New York City. Pediatrics, 1980, 65(4), 683–697; http://www.ncbi.nlm.nih.gov/ pubmed/6988785
  • Godfrey, K., Robinson, S., Barker, D. J., Osmond, C. and Cox, V., Maternal nutrition in early and late pregnancy in relation to placental and foetal growth. BMJ, 1996, 312, 410–414.
  • Hawkesworth, S., Prentice, A. M., Fulford, A. J. C. and Moore, S. E., Dietary supplementation of rural Gambian women during pregnancy does not affect body composition in offspring at 11–17 years of age. J. Nutr., 2008, 138(12), 2468–2473; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2635503&tool= pmcentrez&rendertype=abstract
  • Yajnik, C. S. and Deshmukh, U. S., Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev. Endocr. Metab. Disord., 2008, 104 (Suppl. 1), 203–211.
  • Yajnik, C. S., Nutrient-mediated teratogenesis and fuel-mediated teratogenesis: two pathways of intrauterine programming of diabetes. Int. J. Gynecol. Obstet. (Suppl.), 2009, 104 (Suppl. 1), S27–S31.
  • Behrman, J. R., Calderon, M. C., Preston, S. H., Hoddinott, J., Martorell, R. and Stein, A. D., Nutritional supplementation in girls influences the growth of their children: prospective study in Guatemala. Am. J. Clin. Nutr., 2009, 90(5), 1372–1379; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2762161&tool=pmcentrez&rendertype=abstract
  • Fall, C., Maternal nutrition: effects on health in the next generation. Indian J. Med. Res., 2009, 130(5), 593–599; http://www.ncbi.nlm.nih.gov/pubmed/20090113
  • Kulkarni, B. et al., The association of early life supplemental nutrition with lean body mass and grip strength in adulthood: evidence from APCAPS. Am. J. Epidemiol., 2014, 179(6), 700– 709.
  • Yajnik, C. S. et al., Neonatal anthropometry: the thin–fat Indian baby. The Pune Maternal Nutrition Study. Int. J. Obes. Relat. Metab. Disord., 2003, 27(2), 173–180; http://www.ncbi.nlm.nih.gov/pubmed/12586996
  • Rao, S. et al., Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune maternal nutrition study. J. Nutr., 2001, 131(4), 1217–1224; http://www.ncbi.nlm.nih.gov/pubmed/11285330
  • Yajnik, C. S. et al., Maternal total homocysteine concentration and neonatal size in India. Asia Pac. J. Clin. Nutr., 2005, 14(2), 179– 81.
  • Yajnik, C. S. and Deshmukh, U. S., Foetal programming: maternal nutrition and role of one-carbon metabolism. Rev. Endocr. Metab. Disord., 2012, 13(2), 121–127; http://www.ncbi.nlm.nih.gov/ pubmed/22415298
  • Dominguez-Salas, P., Cox, S. E., Prentice, A. M., Hennig, B. J. and Moore, S. E., Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc. Nutr. Soc., 2012, 71(1), 154–165; http://www.ncbi.nlm.nih.gov/pubmed/22124338
  • Donovan, L. E. and Cundy, T., Does exposure to hyperglycaemia in utero increase the risk of obesity and diabetes in the offspring? Diabetic Med., 2016, 33(5), 695–696; http://www.ncbi.nlm.nih.gov/pubmed/26433133
  • McCance, D. R., Pettitt, D. J., Hanson, R. L., Jacobsson, L. T., Knowler, W. C. and Bennett, P. H., Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ, 1994, 308(6934), 942–945; http://www.ncbi.nlm.nih.gov/pubmed/8173400
  • Hill, J. C., Krishnaveni, G. V., Annamma, I., Leary, S. D. and Fall, C. H. D., Glucose tolerance in pregnancy in South India: relationships to neonatal anthropometry. Acta Obstet. Gynecol. Scand., 2005, 84(2), 159–165; http://www.ncbi.nlm.nih.gov/ pubmed/15683377
  • Babu, G. R., Garadi, L., Murthy, G. V. S. and Kinra, S., Effect of hyperglycaemia in pregnancy on adiposity in their infants in India: a protocol of a multicentre cohort study. BMJ Open, 2014, 4(6), e005417; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4078779&tool=pmcentrez&rendertype=abstract
  • Barker, D. J., Shiell, A. W., Barker, M. E. and Law, C. M., Growth in utero and blood pressure levels in the next generation. J. Hypertens., 2000, 18(7), 843–846; http://www.ncbi.nlm.nih.gov/ pubmed/10930180
  • Pomeroy, E., Wells, J. C. K., Cole, T. J., O’Callaghan, M. and Stock, J. T., Relationships of maternal and paternal anthropometry with neonatal body size, proportions and adiposity in an Australian cohort. Am. J. Phys. Anthropol., 2015, 156(4), 625–636; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4404025&tool=pmcentrez&rendertype=abstract
  • Veena, S. R. et al., Intergenerational effects on size at birth in South India. Paediatr. Perinat. Epidemiol., 2004, 18(5), 361–370; http://www.ncbi.nlm.nih.gov/pubmed/15367323
  • Veena, S. R. et al., Relationships of maternal and paternal birthweights to features of the metabolic syndrome in adult offspring: an inter-generational study in South India. Diabetologia, 2007, 50(1), 43–54; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2493388&tool=pmcentrez&rendertype=abstract
  • Lawlor, D. A. et al., Epidemiologic evidence for the foetal overnutrition hypothesis: findings from the Mater-University study of pregnancy and its outcomes. Am. J. Epidemiol., 2007, 165(4), 418–424; http://www.ncbi.nlm.nih.gov/pubmed/17158475
  • Laura, H. C., Menezes, A. B., Noal, R. B., Hallal, P. C. and Araújo, C. L., Maternal anthropometric characteristics in pregnancy and blood pressure among adolescents: 1993 live birth cohort, Pelotas, southern Brazil. BMC Public Health, 2010, 10, 434; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 2918557&tool=pmcentrez&rendertype=abstract
  • Bhargava, S. K. et al., Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N. Engl. J. Med., 2004, 350(9), 865–875; http:// www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3408694&tool= pmcentrez&rendertype=abstract
  • Raghupathy, P. et al., Glucose tolerance, insulin resistance and insulin secretion in young South Indian adults: relationships to parental size, neonatal size and childhood body mass index. Diabetes Res. Clin. Pract., 2010, 87(2), 283–292; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3428893&tool= pmcentrez&rendertype=abstract
  • Bavdekar, A. et al., Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes, 1999, 48(12), 2422–2429; http://www.ncbi.nlm.nih.gov/pubmed/ 10580432
  • Krishnaveni, G. V., Veena, S. R., Wills, A. K., Hill, J. C., Karat, S. C. and Fall, C. H. D., Adiposity, insulin resistance and cardiovascular risk factors in 9–10-year-old Indian children: relationships with birth size and postnatal growth. J. Dev. Origins Health Dis., 2010, 1(6), 403–411; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3272429&tool=pmcentrez&rendertype= abstract
  • Fall, C. H. D. et al., Adult metabolic syndrome and impaired glucose tolerance are associated with different patterns of BMI gain during infancy: data from the New Delhi Birth Cohort. Diabetes Care, 2008, 31(12), 2349–2356; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2584194&tool= pmcentrez&rendertype=abstract
  • Krishna, M. et al., Cohort profile: the 1934–66 Mysore birth records cohort in South India. Int. J. Epidemiol., 2015, 44(6), 1833–1841.
  • Antonisamy, B. et al., Cohort profile: the 1969–73 Vellore birth cohort study in South India. Int. J. Epidemiol., 2009, 38(3), 663– 669; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 2691411&tool=pmcentrez&rendertype=abstract
  • Yajnik, C. S. et al., Foetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabetic Med., 1995, 12(4), 330–336; http://www.ncbi.nlm.nih.gov/pubmed/7600749
  • Shelgikar, K. M., Hockaday, T. D. and Yajnik, C. S., Central rather than generalized obesity is related to hyperglycaemia in Asian Indian subjects. Diabetic Med., 1991, 8(8), 712–717; http://www.ncbi.nlm.nih.gov/pubmed/1838061
  • Joshi, S. M. et al., Tracking of cardiovascular risk factors from childhood to young adulthood – the Pune Children’s Study. Int. J. Cardiol., 2014, 175(1), 176–178; http://www.ncbi.nlm.nih.gov/ pubmed/24874906
  • Krishnaveni, G. V. et al., Truncal adiposity is present at birth and in early childhood in South Indian children. Indian Pediatr., 2005, 42(6), 527–538; http://www.ncbi.nlm.nih.gov/pubmed/15995269
  • Sniderman, A. D., Bhopal, R., Prabhakaran, D., Sarrafzadegan, N. and Tchernof, A., Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int. J. Epidemiol., 2007, 36(1), 220– 225; http://www.ncbi.nlm.nih.gov/pubmed/17510078
  • Victora, C. G. et al., Maternal and child undernutrition: consequences for adult health and human capital. Lancet, 2008, 371(9609), 340–357; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2258311&tool=pmcentrez&rendertype=abstract
  • Richter, L. M. et al., Cohort profile: the consortium of healthorientated research in transitioning societies. Int. J. Epidemiol., 2012, 41(3), 621–626; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3378468&tool=pmcentrez&rendertype=abstract
  • The State of the World’s Children, UNICEF, Report, Children in an Urban World, 2012.
  • Owen, C. G., Martin, R. M., Whincup, P. H., Smith, G. D. and Cook, D. G., Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am. J. Clin. Nutr., 2006, 84(5), 1043–1054.
  • Fall, C. H. et al., Infant-feeding patterns and cardiovascular risk factors in young adulthood: data from five cohorts in low-and middle-income countries. Int. J. Epidemiol., 2011, 40, 47–62.
  • Forsdahl, A., Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br. J. Prev. Soc. Med., 1977, 31, 91–95.
  • Lynch, J. and Smith, G. D., A life course approach to chronic disease epidemiology. Annu. Rev. Public Health, 2005, 26(1), 1–35.
  • Phillips, D. I. W. et al., Foetal and infant growth and glucose tolerance in the Hertfordshire Cohort Study: a study of men and women born between 1931 and 1939. Diabetes (Suppl. 2), 2005, 54, S145–S150; http://www.ncbi.nlm.nih.gov/pubmed/16306332
  • Syddall, H. E., Aihie Sayer, A., Dennison, E. M., Martin, H. J., Barker, D. J. P. and Cooper, C., Cohort profile: the Hertfordshire cohort study. Int. J. Epidemiol., 2005, 34(6), 1234–1242; http://www.ncbi.nlm.nih.gov/pubmed/15964908
  • Kinra, S. et al., Cohort profile: Andhra Pradesh Children and Parents Study (APCAPS). Int. J. Epidemiol., 2014, 43(5), 1417– 1424; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 4190511&tool=pmcentrez&rendertype=abstract
  • http://www.wcd.nic.in/ (cited 12 May 2014).
  • http://www.icmr.nic.in/annual/nin.pdf (cited 12 May 2014).
  • Kinra, S., et al., Effect of integration of supplemental nutrition with public health programmes in pregnancy and early childhood on cardiovascular risk in rural Indian adolescents: long term follow-up of Hyderabad nutrition trial. BMJ, 2008, 337, a605; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2500199&tool=pmcentrez&rendertype=abstract
  • Kulkarni, B. et al., The association of early life supplemental nutrition with lean body mass and grip strength in adulthood: evidence from APCAPS. Am. J. Epidemiol., 2014, 179(6), 700– 709; http://www.ncbi.nlm.nih.gov/pubmed/24553777
  • Matsuzaki, M. et al., Life-course determinants of bone mass in young adults from a transitional rural community in India: the Andhra Pradesh Children and Parents Study (APCAPS). Am. J. Clin. Nutr., 2014, 99(6), 1450–1459.
  • Kinra, S., Sarma, K. R., Hards, M., Smith, G. D. and Ben-Shlomo, Y., Is relative leg length a biomarker of childhood nutrition? Long-term follow-up of the Hyderabad Nutrition Trial. Int. J. Epidemiol., 2011, 40, 1022–1029.
  • Sladek, R., et al., A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007, 445(7130), 881– 885; http://www.nature.com/doifinder/10.1038/nature05616 86. Waddington, C. H., An Introduction to Modern Genetics, The Macmillan Company, New York, 1939, p. 441; http://books.google.co.in/books/about/An_introduction_to_modern_genetics.html?id=-Hk5AAAAMAAJ&pgis=1
  • Fall, C. H. D., Evidence for the intra-uterine programming of adiposity in later life. Ann. Hum. Biol., 2011, 38(4), 410–428; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3428869&tool=pmcentrez&rendertype=abstract
  • Li, M., Sloboda, D. M. and Vickers, M. H., Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp. Diabetes Res., 2011, 1–9.

Abstract Views: 290

PDF Views: 86




  • Early Life Influences and Type-2 Diabetes – A Review

Abstract Views: 290  |  PDF Views: 86

Authors

Poornima Prabhakaran
Public Health Foundation of India, 6th Floor, Plot 47, Sector 44, Gurgaon 122 002, India
Nikhil Tandon
Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, West Ansari Nagar, New Delhi 110 029, India

Abstract


Early life factors encompassing parental, foetal and postnatal characteristics, have an important influence on individual disease risk. Of particular importance is the role of maternal lifetime nutrition and metabolic reserves, and the impact on offspring birth outcomes. Birth weight, in turn, affects disease risk in later life. Being born small and showing rapid weight gain during childhood are especially important risk determinants for impaired glucose tolerance, higher blood pressure, dyslipidaemia, overweight and obesity in later life. Postnatal growth patterns, socio-environmental factors and genetic influences thus act in concert to increase the predilection for chronic diseases, including type-2 diabetes.

Keywords


Birth Weight, Disease Risk, Maternal Nutrition, Type-2 Diabetes.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi07%2F1311-1320