Open Access Open Access  Restricted Access Subscription Access

Regional Scale Analysis of Climate Extremes in an SRM Geoengineering Simulation, Part 1:Precipitation Extremes


Affiliations
1 Department of Geography, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, India
 

In this study, we examine the statistics of precipitation extreme events in a model simulation of solar radiation management (SRM) geoengineering. We consider both intensity and frequency-based extreme indices for precipitation. The analysis is performed over both large-scale domains as well as regional scales (22 Giorgi land regions). We find that precipitation extremes are substantially reduced in geoengineering simulation: the magnitude of change is much smaller than those that occur in a simulation with elevated atmospheric CO2 alone. In the geoengineered climate, though the global mean of the intensity of extreme precipitation events is slightly less than in control climate, substantial changes remain on regional scales. We do not find significant changes in the frequency of precipitation extremes in geoengineering simulation compared to control simulation on global and regional scales. We infer that SRM schemes are likely to reduce precipitation extremes and the associated impacts on a global scale. However, we note that a comprehensive assessment of moral, social, ethical, legal, technological, economic, political and governance issues is required for using SRM methods to counter the impacts of climate change.

Keywords

Geoengineering, Solar Radiation Management, Extreme Events, Regional Analysis.
User
Notifications
Font Size

  • IPCC, Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.), Cambridge University Press, Cambridge, UK, 2013.
  • Keith, D. W., Geoengineering the climate: history and prospect. Annu. Rev. Energ. Environ., 2000, 25, 245–284; doi:10.1146/annurev.energy.25.1.245.
  • Bala, G., Problems with geoengineering schemes to combat climate change. Curr. Sci., 2009, 96(1), 42–48.
  • Shephard et al., Geoengineering the climate: science, governance and uncertainty. The Royal Society, London, 2009; https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2009/8693.pdf (accessed on 19 June 2015).
  • Vaughan, N. E. and Lenton, T. M., A review of climate geoengineering proposals. Climate Change, 2011, 109, 745–790; doi:0.1007/s10584-011-0027-7.
  • Caldeira, K., Bala, G. and Cao, L., The science of geoengineering. Annu. Rev. Earth Planet. Sci., 2013, 41, 231–256; doi:10.1146/annurev-earth-042711-105548.
  • NAS, Climate intervention: reflecting sunlight to cool earth. National Academy of Sciences Report, National Academies Press, USA, 2015; https://nas-sites.org/americasclimatechoices/other-reports-on-climate-change/2015-2/climate-intervention-reports/ (accessed on 19 June 2015).
  • Govindasamy, B. and Caldeira, K., Geoengineering earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett., 2000, 27, 2141–2144; doi:10.1029/1999GL006086.
  • Govindasamy, B., Thompson, S., Duffy, P. B., Caldeira, K. and Delire, C., Impact of geoengineering schemes on the terrestrial biosphere. Geophys. Res. Lett., 2002, 29(22), 2061; doi:10.1029/2002GL015911.
  • Govindasamy, B., Caldeira, K. and Duffy, P. B., Geoengineering earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Global Planet. Change, 2003, 37(1–2), 157–168; doi:10.1016/S0921-8181(02)00195-9.
  • Matthews, H. D. and Caldeira, K., Transient climate–carbon simulations of planetary geoengineering. Proc. Natl. Acad. Sci. USA, 2007, 104, 9949–9954; doi:10.1073/pnas.0700419104.
  • Robock, A., Oman, L. and Stenchikov, G. L., Regional climate responses to geoengineering with tropical and arctic SO2 injections. J. Geophys. Res., 2008, 113, D16101; doi:10.1029/2008JD010050.
  • Rasch, P. J. et al., An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. R. Soc. London, Ser. A, 2008, 366, 4007–4037; doi:10.1098/rsta.2008.013.
  • Ricke, K. L., Granger Morgan, M. and Allen, M. R., Regional climate response to solar radiation management. Nature Geosci., 2010, 3, 537–541; doi:10.1038/ngeo915.
  • Schmidt, H. et al., Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models. Earth Syst. Dyn., 2012, 3, 63–78; doi:10.5194/esd-3-63-2012.
  • Kravitz, B. et al., Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 2013, 118, 8320–8331; doi:10.1002/jgrd.50646.
  • Tilmes, S. et al., The hydrologic impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 2013, 118, 11036–11058; doi:10.1002/jgrd.50868.
  • Bala, G., Duffy, P. B. and Taylor, K. E., Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA, 2008, 105, 7664–7669; doi:10.1073/pnas.0711648105.
  • Muthyala, R., Bala, G. and Nalam, A., Regional scale analysis of climate extremes in an SRM geoengineering simulation, Part 2: temperature extremes. Curr. Sci., 2018, 114(5), 1036–1045.
  • Kharin, V. V. and Zwiers, F. W., Estimating extremes in transient climate change simulations. J. Climate, 2005, 18, 1156–1173.
  • Emori, S. and Brown, S., Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 2005, 32, L17706; doi:10.1029/2005GL023272.
  • Held, I. M. and Soden, B. J., Robust responses of the hydrological cycle to global warming. J. Climate, 2006, 19, 5686–5699; doi:10.1175/JCLI3990.1.
  • Barnett, D. N., Brown, S. J., Murphy, J. M., Sexton, D. M. H. and Webb, M. J., Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Climate Dyn., 2006, 26, 489–511; doi:10.1007/s00382-005-0097-1.
  • Kharin, V. V., Zwiers, F. W., Zhang, X. and Hegerl, G. C., Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 2007, 20, 1419–1444; doi:10.1175/JCLI4066.1.
  • Allan, R. P. and Soden, B. J., Atmospheric warming and the amplification of precipitation extremes. Science, 2008, 321, 1481–1484; doi10.1126/science.1160787.
  • O’Gorman, P. A. and Schneider, T., Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 2009, 22, 5676–5685.
  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. and Bronaugh, D., Climate extreme indices in the CMIP5 multi-model ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 2013, 118, 1716–1733; doi:10.1002/jgrd.50203.
  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. and Bronaugh, D., Climate extreme indices in the CMIP5 multi-model ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 2013, 118, 2473–2493; doi:10.1002/jgrd.50188.
  • O’Gorman, P. A., Sensitivity of tropical precipitation extremes to climate change. Nature Geosci., 2012, 5(10), 697–700; doi:10.1038/ngeo1568.
  • Curry, C. L. et al., A multimodel examination of climate extremes in an idealized geoengineering experiment, J. Geophys. Res. Atmos., 2014, 119, 3900–3923; doi:10.1002/2013JD020648.
  • Richard, B. N. et al., Description of the NCAR community atmosphere model (CAM 5.0). NCAR Technical Note NCAR/TN-464 + STR, National Centre for Atmospheric Research, Boulder, CO, USA, 2012.
  • Collins, W. D. et al., Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note NCAR/TN-464 + STR, National Centre for Atmospheric Research, Boulder, CO, USA, 2004.
  • World Meteorological Organization, The global climate (2001–2010). A decade of climate extremes. Summary Report WMO No. 1119, 2013; http://library.wmo.int/pmb_ged/wmo_1119_en.pdf (assessed 19 June 2015).
  • Allen, M. R. and Ingram, W. J., Constraints on future changes in climate and the hydrologic cycle. Nature, 2002, 419, 224–232; doi:10.1038/nature01092.
  • Sun, Y., Solomon, S., Dai, A. and Portmann, R. W., How often will it rain? J. Climate, 2007, 20, 4801–4818; doi:10.1029/2008GL036728.
  • O’Gorman, P. A. and Schneider, T., The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 2008, 21, 3815–3832; doi:10.1175/2007JCLI2065.1.
  • Trenberth, K. E., Precipitation in a changing climate – more floods and droughts in the future. GEWEX News, 2009, 19, 8–10.
  • Huffman, G. J. and Bolvin, D. T., Version 1.2: GPCP one-degree daily precipitation data set documentation. Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center and Science Systems and Applications, USA, 2013; ftp://meso.gsfc.nasa.gov/pub/idd-v1.2/1DD_V1.2_doc.pdf (accessed on 19 June 2015).
  • Trenberth, K. E., Changes in precipitation with climate change. Climate Res., 2011, 47, 123–138; doi:10.3354/cr00953.
  • Giorgi, F. and Francisco, R., Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 2000, 16, 169–182.
  • Bala, G., Caldeira, K., Nemani, R., Cao, L., Ban-Weiss, G. and Shin, H. J., Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Climate Dyn., 2010, 37(5–6), 915–931; doi:10.1007/s00382-010-0868-1.
  • Bala, G. and Nag, B., Albedo enhancement over land to counteract global warming: impacts on hydrological cycle. Climate Dyn., 2012, 39, 1527–1542; doi:10.1007/s00382-011-1256-1.
  • Kalidindi, S., Bala, G., Modak, A. and Caldeira, K., Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Climate Dyn., 2015, 44, 2909–2925; doi:10.1007/s00382-014-2240-3.
  • Zhang, X. and Zwiers, F., Statistical indices for diagnosing and detecting changes in extremes. In Extremes in a Changing Climate: Detection, Analysis and Uncertainty (eds Agha Kouchak, A. et al.), Springer Science + Business Media, Heidelberg, Germany, 2012, pp. 1–14.
  • Lunt, D. J., Ridgwell, A., Valdes, P. J. and Seale, A., Sunshade world: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys. Res. Lett., 2008, 35, L12710; doi: 10.1029/2008GL033674.
  • Modak, A. and Bala, G., Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in solar radiation management. Atmos. Chem. Phys., 2014, 14, 7769–7779; doi: 10.5194/acp-14-7769-2014.
  • Ammann, C. M., Washington, W. M., Meehl, G. A., Buja, L. and Teng, H., Climate engineering through artificial enhancement of natural forcings: magnitudes and implied consequences. J. Geophys. Res., 2010, 115, D22109; doi:10.1029/2009JD012878.
  • Jones, A., Haywood, J. and Boucher, O., A comparison of the climate impacts of geoengineering by stratospheric SO2 injection and by brightening of marine stratocumulus cloud. Atmos. Sci. Lett., 2011, 12, 176–183; doi:10.1002/asl.29.
  • Fyfe, J., Cole, J., Arora, V. and Scinocca, J., Biogeochemical carbon coupling influences global precipitation in geoengineering experiments. Geophys. Res. Lett., 2013, 40, 651–655; doi:10.1002/grl.50166.
  • Niemeier, U., Schmidt, H., Alterskjær, K. and Kristjánsson, J. E., Solar irradiance reduction via climate engineering: impact of different techniques on the energy balance and the hydrological cycle. J. Geophys. Res. Atmos., 2013, 118, 11; doi:10.1002/2013JD020445.
  • Ferraro, A. J., Highwood, E. J. and Charlton-Perez, A. J., Weakened tropical circulation and reduced precipitation in response to geoengineering. Environ. Res. Lett., 2014, 9, 014001; doi:10.1088/1748-9326/9/1/014001.
  • Aswathy, V. N., Boucher, O., Quaas, M., Niemier, U., Muri, H. and Quaas, J., Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering. Atmos. Chem. Phys. Discuss, 2014, 14, 32393–32425; doi:10.5194/acpd-14-32393-2014.

Abstract Views: 424

PDF Views: 117




  • Regional Scale Analysis of Climate Extremes in an SRM Geoengineering Simulation, Part 1:Precipitation Extremes

Abstract Views: 424  |  PDF Views: 117

Authors

Rohi Muthyala
Department of Geography, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
Govindasamy Bala
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, India
Aditya Nalam
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, India

Abstract


In this study, we examine the statistics of precipitation extreme events in a model simulation of solar radiation management (SRM) geoengineering. We consider both intensity and frequency-based extreme indices for precipitation. The analysis is performed over both large-scale domains as well as regional scales (22 Giorgi land regions). We find that precipitation extremes are substantially reduced in geoengineering simulation: the magnitude of change is much smaller than those that occur in a simulation with elevated atmospheric CO2 alone. In the geoengineered climate, though the global mean of the intensity of extreme precipitation events is slightly less than in control climate, substantial changes remain on regional scales. We do not find significant changes in the frequency of precipitation extremes in geoengineering simulation compared to control simulation on global and regional scales. We infer that SRM schemes are likely to reduce precipitation extremes and the associated impacts on a global scale. However, we note that a comprehensive assessment of moral, social, ethical, legal, technological, economic, political and governance issues is required for using SRM methods to counter the impacts of climate change.

Keywords


Geoengineering, Solar Radiation Management, Extreme Events, Regional Analysis.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi05%2F1024-1035