Open Access
Subscription Access
Calcite Precipitation by Rhodococcus sp. Isolated from Kotumsar Cave, Chhattisgarh, India
The precipitation of carbonate minerals by Rhodococcus sp. strain S14 isolated from Kotumsar cave, Chhattisgarh, India is reported. The speleothems at Kotumsar showed high microbial cell enumeration on B4 agar; iron agar (3.4 x 105 CFU/g) and sulphite agar (7.2 x 102 CFU/g). National Centre for Biotechnology Information database was used for the BLASTn sequence search of 16S rRNA sequences. The S14 strain gave similarity scores of ≥99% with the respective organisms on the database. The strain was identified as Rhodococcus sp. Culture experiments performed using the isolated strains suggested that the rate of precipitation was dependent on pH, temperature and bacterial growth. Rhodococcus sp. S14 strain induced the formation of calcite in vitro and the biominerals produced were calcified spherulites with pores (as imaged with SEM). The precipitate, at the end of the experimental period of 35 days, had the appearance of coccoliths. This is the initial report on the possible involvement of Rhodococcus sp. in the precipitation of carbonates at Kotumsar cave.
Keywords
Biocalcification, Cave Geomicrobiology, Precipitation, Rhodococcus sp.
User
Font Size
Information
- Ikner, L. A., Toomey, R. S., Nolan, G., Neilson, J. W., Pryor, B. M. and Maier, R., Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb. Ecol., 2007, 53, 30–42.
- Shapiro, J. and Pringle, A., Anthropogenic influences on the diversity of fungi isolated from caves in Kentucky and Tennessee. Am. Midl. Nat., 2010, 163, 76–86.
- Adetutu, E. M., Thorpe, K., Bourne, S., Cao, X., Shahsavari, E., Kirby, G. and Ball, A. S., Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia, 2011, 103, 959–968.
- Barton, H. A. and Jurado, V., What’s up down there? Microbial diversity in caves. Microbe, 2007, 2, 132–138.
- Chafetz, H. S., Bacterially induced precipitates of calcium carbonate and lithification of microbial mats. In Biostabilization of Sediments (eds Krumbein, W. E., Paterson, D. M. and Stal, L. J.), Universitat Oldenburg, Germany, 1994, pp. 149–163.
- Ehrlich, H. L., Geomicrobiology, Marcel Dekker, Inc, New York, 1996, p. 719.
- Rivadeneyra, M. A., Delgado, G., Ramos-Cormenzana, A. and Delgado, R., Biomineralisation of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res. Microbiol., 1998, 149, 277–287.
- Cacchio, P., Ercole, C., Contento, R., Cappuccio, G., Martinez, M. P., Del Gallo, M. and Lepidi, A., Involvement of bacteria in the origin of a newly described speleothem in the gypsum cave of Grave Grubbo (Crotone, Italy). J. Cave Karst. Stud., 2012, 74(1), 7–18.
- Miller, A. Z., Dionísio, A., Jurado, V., Cuezva, S., Sanchez-Moral, S., Canaveras, J. C. and Saiz-Jimenez, C., Biomineralization by cave dwelling microorganisms. In Advances in Geochemistry Research (ed. Sanjurjo Sanchéz, J.), Nova Science Publishers, New York, 2013, pp. 77–105.
- Baskar, S., Routh, J., Baskar, R., Kumar, A., Miettinen, H. and Itaevaara, M., Evidences for microbial precipitation of calcite in speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrobiol. J., 2016, 33(10), 906–933.
- Lichtinger, T., Reiss, G. and Benz, R., Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis. J. Bacteriol., 2000, 182(3), 764–770.
- McLeod, M. et al., The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA, 2006, 103, 15582–15587.
- Amann, R. I., Ludwig, W. and Schleifer, K. H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59, 143–169.
- Donachie, S. P., Foster, J. S. and Brown, M. V., Culture clash: challenging the dogma of microbial diversity. ISME J., 2007, 1, 97–102.
- De Leo, F., Iero, A., Zammit, G. and Urzì, C., Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int. J. Speleol., 2012, 41(2), 125–136.
- Sankhyan, A. R., Dewangan, L. N., Sahoo, R. H., Chakravarty, R. and Chatterjee, R., Early prehistoric signatures of man in Bastar region, Central India. Curr. Sci., 2011, 101(9), 1146–1149.
- Diwan, H. D., Gupta, M. P. and Bandhu, J., Perspective geomorphic analysis of Kotumsar karstic cave zone, Kanger Valley, Chhattisgarh (India). In XVII International Symposium on Biospeleology, Raipur, Abstr., 2004, p. 41.
- Biswas, J., Kotumsar cave biodiversity: a review of cavernicoles and their troglobiotic traits. Biodivers. Conserv., 2010, 19(1), 275–289.
- Yadava, M. G., Sarswat, K. S. and Ramesh, R., Evidences of early human occupation in the limestone caves of Bastar, Chhattisgarh. Curr. Sci., 2007, 92(6), 25.
- Boquet, E., Boronat, A. and Ramos-Cormenza, A., Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature, 1973, 246, 527–529.
- Altschul, S. F., Madden, T. L., Schaffer, A. J., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25, 3389–3402.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28, 2731–2739.
- Hall, T. A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 1999, 41, 95–98.
- Sharma, Y. R., Elementary Organic Spectroscopy: Principles and Chemical Applications, S. Chand Publ, New Delhi, 1989, p. 294.
- Robinson, J. W., Frame, E. M. S. and Frame II, G. M., In Undergraduate Instrumental Analysis, CRC Press, Taylor and Francis Group, Boca Raton, 2004, 6th edn, p. 1079.
- Hofmann, B. A., Farmer, J. D., von Blanckenburg, F. and Fallick, A. E., Subsurface filamentous fabrics: an evolution of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology, 2008, 8, 87–117.
- Nealson, K. H. and Stahl, D. A., Microorganisms and biogeochemical cycles; what can we learn from layered microbial communities? In Geomicrobiology: Interactions between Microbes and Minerals (eds Banfield, J. F. and Nealson, K. H.), Mineralogical Society of America, Washington, DC, 1997, vol. 35, pp. 5–34.
- Newman, D. K. and Banfield, J. F., Geomicrobiology: how molecular-scale interactions underpin geochemical systems. Science, 2002, 296, 1071–1077.
- Van Cappellen, Biomineralization and global biogeochemical cycles. In Biomineralization, Rev. Mineralogy and Geochemistry (eds Dove, P. M., De Yoreo, J. J. and Weiner, S.), 2003, vol. 54, pp. 357–381.
- Bauerlein, E., Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem., Int. Ed. Engl., 2003, 42(6), 614–641.
- Weiner, S. and Dove, P. M., An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem., 2003, 54, 1–29.
- Benzerara, K., Miot, J., Morin, G., Ona-Nguema, G., SkouriPanet, F. and Ferard, C., Significance, mechanisms and environmental implications of microbial biomineralization. C. R. Geosci., 2011, 343, 160–167.
- Northup, D. E. and Lavoie, K. H., Geomicrobiology of caves: a review. Geomicrobiol. J., 2001, 18, 199–222.
- Jones, B., Speleothems in a wave-cut notch, Cayman Brac, British West Indies: the integrated product of subaerial precipitation, dissolution, and microbes. Sediment. Geol., 2010, 232, 15–34.
- Goodfellow, M., The actinomycetes I. Suprageneric classification of actinomycetes. In Bergey’s Manual of Systematic Bacteriology (eds Williams, S. T., Sharpe, M. E. and Holt, J. G.), Williams & Wilkins, Baltimore, 1989, vol. 4, pp. 2333–2339.
- Rusznyak, A. et al., Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic Herrenberg Cave. Appl. Environ. Microbiol., 2012, 78, 115–1167.
- Groth, I., Schumann, P., Laiz, L., Sanchez-Moral, S., Canaveras, J. C. and Saiz-Jimenez, C., Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol. J., 2001, 18, 241–258.
- Cacchio, P., Ercole, C., Cappuccio, G. and Lepidi, A., CaCO3 precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol. J., 2003, 20, 85–98.
- Van Lith, Y., Warthmann, R., Vasconcelos, C. and McKenzie, J., Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 2003, 50, 237–245.
- Dupraz, C., Vissher, P. T., Baumgartner, L. K. and Reid, R. P., Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 2004, 51, 745–765.
- Aloisi, G., Gloter, A., Krüger, M., Wallmann, K., Guyot, F. and Zuddas, P., Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 2006, 34, 1017–1020.
- Braissant, O., Cailleau, G., Dupraz, C. and Verrecchia, A. P., Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J. Sediment. Res., 2003, 73, 485–490.
- Gonzalez-Munoz, M. T., Chekroun, K. B., Aboud, A. B., Arias, J. M. and Rodriguez-Gallego, M., Bacterially induced Mg-calcite formation: role of Mg2+ in development of crystal morphology. J. Sediment. Res., 2000, 70, 559–564.
- Portillo, M. C., Porca, E., Cuezva, S., Canaveras, J. C., SanchezMoral, S. and Gonzalez, J. M., Is the availability of different nutrients a critical factor for the impact of bacteria on subterraneous carbon budgets? Naturwissenschaften, 2009, 96, 1035–1042.
- Beveridge, T. J., Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol., 1989, 43, 147–171.
- Castanier, S., Metayer-Levrel, G. L., Orial, G., Loubiere, J. F. and Perthuisot, J. P., Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage (eds Ciferri, O., Tiano, P. and Mastromei, G.), Plenum, New York, 2000, pp. 201–216.
- Wright, D. T. and Oren, A., Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol. J., 2005, 22, 27–53.
- Gadd, M., Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 2010, 156(3), 609–643.
- Castanier, S., Le M´etayer-Levrel, G. and Perthuisot, J. P., Ca-carbonates precipitation and limestone genesis – the micro-biogeologist point of view. Sediment. Geol., 1999, 126, 9–23.
- Fujita, Y., Ferris, F. G., Lawson, R. D., Colwell, F. S. and Smith, R. W., Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J., 2000, 17, 305–318.
Abstract Views: 363
PDF Views: 152