Open Access Open Access  Restricted Access Subscription Access

Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM


Affiliations
1 Earth Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
 

The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land–sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The model-produced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

Keywords

Atmospheric Models, Jet Streams, Monsoon Circulation and ITCZ, Tropical Volcanic Eruptions.
User
Notifications
Font Size


  • Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

Abstract Views: 518  |  PDF Views: 179

Authors

Muhammad Mubashar Dogar
Earth Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Abstract


The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land–sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The model-produced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

Keywords


Atmospheric Models, Jet Streams, Monsoon Circulation and ITCZ, Tropical Volcanic Eruptions.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi06%2F1284-1294