Open Access Open Access  Restricted Access Subscription Access

Luminescent Solar Concentrators – The Solar Waveguides


Affiliations
1 Department of Physics, The American College, Madurai 625 002, India
2 School of Physics, Madurai Kamaraj University, Madurai 625 021, India
3 Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 002, India
 

This study aims at giving a prologue to the non-tracking, concentrating solar waveguides called luminescent solar concentrators. It deliberates the major factors of loss in such systems that limit photon collection and conversion efficiency. Identifying fluorescent molecules possessing a larger Stokes shift value with a broad degree of absorption in the UV-Vis continuum, with sharper and narrower near infra-red emission spectra at a higher quantum yield that achieves a perpetual total internal reflection, remains a challenge now. Geometrical and material properties also play a strategic role in accomplishing waveguides, with minimal loss, through total internal reflection of trapped photons for photovoltaic conversion.

Keywords

Fluorescence, Luminescent Solar Concentrator, Poly(Methyl Methacrylate), Total Internal Reflection.
User
Notifications
Font Size

  • Weber, W. H. and Lambe, J., Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Appl. Opt., 1976, 15, 2299–2300.
  • Goetzberger, A. and Greubel, W., Solar energy conversion with fluorescent collectors. Appl. Phys., 1977, 14, 123–129.
  • Batchelder, J. S., Zewail, A. H. and Cole, T., Luminescent solar concentrators: theory of operation and techniques for performance evaluation. Appl. Opt., 1979, 18(18), 3090–3110.
  • Klimov, V. I., Baker, T. A., Lim, J., Velizhanin, K. A. and McDaniel, H., Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. ACS Photonics, 2016; doi:10.1021/acsphotonics.6b00307.
  • Sark, W. G. J. H. M. V., Luminescent solar concentrators – a low cost photovoltaics alternative. In EPJ Web of Conferences, Copernicus Institute, The Netherlands, 2012.
  • Gallagher, S. J., Rowan, B. C., Doran, J. and Norton, B., Quantum dot solar concentrator: Device optimisation using spectroscopic techniques. Solar Energy, 2007, 81, 540–547.
  • Roondao, R. et al., High-performance near-infrared luminescent solar concentrators. ACS Appl. Mater. Interf., 2017, 9, 12540–12546.
  • Debije, M. J. and Verbunt, P. P. C., Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater., 2012, 2, 12–35.
  • Goetzberger, A., Fluorescent solar energy collectors: operating conditions with diffuse light. Appl. Phys., 1978, 16, 399–404.
  • Friedman, P. S., Luminescent solar concentrators. Opt. Eng., 1981, 20(6), 887–892.
  • Daorta, S. F., Proto, A., Fusco, R. Andreani, L. C. and Liscidini, M., Cascade luminescent solar concentrators. Appl. Phys. Lett., 2014, 104, 153901–153904.
  • Earp, A. A., Smith, G. B., Franklin, J. and Swift, P., Optimisation of a three-colour luminescent solar concentrator daylighting system. Sol. Energy Mater. Sol. Cells, 2004, 84, 411–426.
  • Buffa, M., Carturan, S., Debije, M. G., Quaranta, A. and Maggioni, G., Dye-doped polysiloxane rubbers for luminescent solar concentrator systems. Sol. Energy Mater. Sol. Cells, 2012, 103, 114–118.
  • Moudam, O., Rowan, B. C., Alamiry, M., Richardson, P., Richards, B. S., Jones, A. C. and Robertson, N., Europium complexes with high total photoluminescence quantum yields in solution and in PMMA. Chem. Commun., 2009, 43, 6649–6651.
  • Krumer, Z., Sark, W. G. J. H. M. V., Schropp, R. E. I. and Donegá, C. D. M., Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration. Sol. Energy Mater. Sol. Cells, 2017, 167, 133–139.
  • Sloof, L. H. et al., A luminescent solar concentrator with 7.1% power conversion efficiency, Phys. Stat. Sol. (RRL), 2008, 2(6), 257–259.
  • Sark, W. G. J. H. M. V., Luminescent solar concentrators – A low cost photovoltaics alternative. Renew. Energy, 2013, 49, 207.
  • Typical Climatic Data for Selected Radiation Stations (The Data Period Covered: 1986-2000), Solar Radiation Hand Book-A joint Project of Solar Energy Centre, MNRE, Indian Metrological Department, 2008.
  • Nair, M. G., Ramamurthy, K. and Ganesan, A. R., Classification of indoor daylight enhancement systems. Lighting Res. Technol., 2014, 46, 245–267.
  • Erickson, C. S., Bradshaw, L. R., McDowall, S., Gilbertson, J. D., Gamelin D. R. and Patrick, D. L., Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano, 2014, 8(4), 3461–3467.
  • Verbunt, P. P. C., Somolinos, C. S., Broer, D. J. and Debije, M. G., Anisotropic light emissions in luminescent solar concentrators-isotropic systems. Opt. Exp., 2013, 21(S3), A485–A93.
  • Swartz, B. A., Cole, T. and Zewail, A. H.., Photon trapping and energy transfer in multiple-dye plastic matrices: an efficient solar-energy concentrator. Opt. Lett., 1977, 1(2), 73–75.
  • Bailea, S. T. et al., Optimized excitation energy transfer in a three-dye luminescent solar concentrator. Sol. Energy Mater. Sol. Cells, 2007, 91, 67–75.
  • Klampaftis, E., Ross, D., McIntosh, K. R. and Richards, B. S., Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Sol. Energy Mater. Sol. Cells, 2009, 93, 1182–1194.
  • Loh, E. and Scalapino, D. J., Luminescent solar concentrators: effects of shape on efficiency. Appl. Opt., 1986, 25(2), 1901–1907.
  • Zewail, A. H. and Batchelder, J. S., Luminescent solar energy concentrator devices, US Patent 4227939, 1980.
  • Smith et al., Sunlight collecting and Transmitting system, US Patent 5548490, 1996.
  • McIntosh, K. R., Yamada N. and Richards, B. S., Theoretical comparison of cylindrical and square-planar luminescent solar concentrators. Appl. Phys. B, 2007, 88, 285–290.
  • Inman, R. H., Shcherbatyuk, G. V., Medvedko, D., Gopinathan, A. and Ghosh, S., Cylindrical luminescent solar concentrators with near-infrared quantum dots. Opt. Exp., 2011, 19(24), 24308–24313.
  • Viswanathan, B., Reinders, A., de Boer, D. K. G., Ras, A., Zahn, H. and Desmet, L., System engineering and design of LSC-PV for outdoor lighting applications, In 7th European Photovoltaic Solar Energy Conference and Exhibition, 5BV.1.38.
  • Corrado, C., Leow, S. W., Osborn, M., Chan, E., Balaban, B. and Carter, S. A., Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design. Sol. Energy Mater. Sol. Cells, 2013, 111, 74–81.
  • Smith et al., Sunlight collecting and Transmitting system, US Patent 5709456, 1998.
  • Green, A. P., Optical Properties of Luminescent Solar Concentrators, Ph D Dissertation, Department of Physics and Astronomy, University of Sheffield, England, 2014, Ch. 2.
  • Wilson, L. R., Luminescent solar concentrators: a study of optical properties, re-absorption and device optimisation, Ph D dissertation, Eriot-Watt Univ., Edinburgh, 2010.
  • Sloof, L. H., Burgers, A. R. and Bende, E., The luminescent solar concentrator: a parameter study towards maximum efficiency. Photonics for Solar Energy Systems II, Proc. SPIE, 2008, 7002, 700209-1-700209-7.
  • de Boer, D. K. G., Broer, D. J., Debije, M. G., Keur, W., Meijerink, A., Ronda, C. R. and Verbunt, P. P. C., Progress in phosphors and filters for luminescent solar concentrators. Opt. Exp., 2012, 20(S3), A395–A405.
  • Peters, M. et al., Energies, 2010, 3, 171–193.
  • Seybold, G., and Wagenblast, G., New perylene and violanthrone dyestuffs for fluorescent collectors. Dyes Pigments, 1989, 11, 303–317.
  • Sloof, L. H., Burgers, A. R., Danz, R. and Roosemalen, J. A. M. V., IV performance and stability of dyes for luminescent plate concentrators. J. Solar Energy Eng., 2007, 129, 277–282.
  • Wilson, L. R., Rowan, B. C., Robertson, N., Moudam, O., Jones, A. C. and Richards, B. S., Characterization and reduction of re-absorption losses in luminescent solar concentrators. Appl. Opt., 2010, 49(9), 1651–1656.
  • Chatten, A. J., Barnham, K. W. J., Buxton, B. F., Daukes, N. J. E. and Malik, M. A., A new approach to modelling quantum dot concentrators. Sol. Energy Mater. Sol. Cells, 2003, 75, 363–371.
  • Ries, H., Thermodynamic limitations of the concentration of electromagnetic radiation. J. Opt. Soc., Am., 1982, A72, 380–385.
  • Yablonovitch, E., Statistical ray optics. J. Opt. Soc., Am., 1982, 72, 899–907.
  • Smestad, G., Ries, H., Winston, R. and Yablonovitch, E., The thermodynamic limits of light concentrators, Solar Energy Mater., 1990, 21, 99–111.
  • Papakonstantinou, I. and Tummeltshammer, C., Fundamental limits of concentration in luminescent solar concentrators revised: the effect of re-absorption and nonunity quantum yield. Optica, 2015, 2(10), 841–849.
  • Kittidachachan, P., Danos, L., Meyer, T. J. J., Alderman, N. and Markvart, T., Photon collection efficiency of fluorescent solar collectors. CHIMIA, 2007, 61(12), 780–786.
  • Debije, M. G., Verbunt, P. P. C., Rowan, B. C. Richards, B. S. and Hoeks, T. L., Measured surface loss from luminescent solar concentrator waveguides. Appl. Opt., 2008, 47(36), 6763–6768.
  • Hermann, A. M., Luminescent solar concentrators – a review. Solar Energy, 1982, 29(4), 323–329.
  • Pandey, K. K. and Pant, T. C., Solar energy concentrator based on uranyl-doped PMMA, Solar Energy Mater., 1991, 21, 327–334.
  • Correia, S. F. H., Bermudez, V. Z., Ribeiro, S. J. L., Andre P. S., Ferreira, R. A. S. and Carlos, L. D., Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. J. Mater. Chem. A, 2014, 2, 5580–5596.
  • Reisfeld, R. and Kaliski, Y., Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collectors. Chem. Phys. Lett., 1981, 80, 178.
  • Zettl, M., Mayer, O., Klampaftis, E. and Richards, B. S., Host polymer investigation for luminescent solar concentrators. Energy Technol., 2016; doi:10.1002/ente.201600498.
  • Slooff, L. H., Bakker, N. J., Sommeling, P. M., Buchtemann, A., Wedel, A. and Sark, W. G. J. H. M. V., Long-term optical stability of fluorescent solar concentrator plates. Phys. Status Solidi A, 2014, 211(5), 1150–1154.
  • Wilson, L. R., Rowan, B. C., Robertson, N., Moudam, O., Jones, A. C. and Richards, B. S., Characterization and reduction of re-absorption losses in luminescent solar concentrators. Appl. Opt., 2010, 49(9), 1651–1656.
  • Liu, C., Deng, R., Gong, Y., Zou, C., Liu, Y., Zhou, X. and Li, B., Luminescent solar concentrators fabricated by dispersing rare earth particles in PMMA waveguide. Int. J. Photoenergy, 2014, 1–5.
  • Li, C. et al., Large stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Scientific Rep., 2015, 5, 17777, 1–5.
  • Chou, C. H., Chuang, J. K. and Chen, F. C., High-performance flexible waveguiding photovoltaics. Scientific Rep., 3, 2244; doi:10.1038/srep02244.
  • McIntosh, K. R., Lau, G., Cotsell, J. N., Hanton, K., Batzner, D. L., Bettiol, F. and Richards, B. S., Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer. Prog. Photovoltaics: Res. Appl., 2009, 17, 191–197.
  • Martinez, A. L. and Gomez, D., Design, fabrication, and characterization of a luminescent solar concentrator with optimized optical concentration through minimization of optical losses. J. Photon Energy, 2016, 6(4), 045504-1-045504-11.
  • Schlosser, K., New Mexico company licenses innovative solar panel technology from two Washington universities. In Geekwire, August 2017.
  • Zhao, Y. and Lunt, R. R., Transparent luminescent solar concentrators for large–area solar windows enabled by massive Stokes–Shift nanocluster phosphors. Adv. Energy Mater., 2013, 3, 1143–1148.
  • Chowdhury, F. I., Dick, C., Meng, L., Mahpeykar, S. M., Ahvazi, B. and Wang, X., Cellulose nanocrystals as host matrix and wave-guide materials for recyclable luminescent solar concentrators. RSC Adv., 2017, 7, 32436–32441.

Abstract Views: 304

PDF Views: 138




  • Luminescent Solar Concentrators – The Solar Waveguides

Abstract Views: 304  |  PDF Views: 138

Authors

Brindha V. G. Mohan
Department of Physics, The American College, Madurai 625 002, India
V. Vasu
School of Physics, Madurai Kamaraj University, Madurai 625 021, India
V. Vasu
School of Physics, Madurai Kamaraj University, Madurai 625 021, India
A. Robson Benjamin
Department of Physics, The American College, Madurai 625 002, India
M. Kottaisamy
Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 002, India

Abstract


This study aims at giving a prologue to the non-tracking, concentrating solar waveguides called luminescent solar concentrators. It deliberates the major factors of loss in such systems that limit photon collection and conversion efficiency. Identifying fluorescent molecules possessing a larger Stokes shift value with a broad degree of absorption in the UV-Vis continuum, with sharper and narrower near infra-red emission spectra at a higher quantum yield that achieves a perpetual total internal reflection, remains a challenge now. Geometrical and material properties also play a strategic role in accomplishing waveguides, with minimal loss, through total internal reflection of trapped photons for photovoltaic conversion.

Keywords


Fluorescence, Luminescent Solar Concentrator, Poly(Methyl Methacrylate), Total Internal Reflection.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi08%2F1656-1664