Open Access
Subscription Access
Numerical and Experimental Studies in Prediction of Bed Levels of Aggrading Channels
A semi-coupled 1D numerical model is presented to compute transient bed and water levels of aggrading channels due to the overloading of sediments. The numerical model solves mass and momentum equations (i.e. de Saint–Venant equations) for water and continuity equations for sediments simultaneously, using explicit finite difference scheme while considering upstream and downstream boundary conditions in the channel. Series of experimental studies are reported for measurements of bed and water levels in an aggrading channel due to the overloading of uniform sediments, in a flume installed at the Advanced Hydraulics Laboratory of SVNIT. The performance of bed level variation models, with different sediment transport functions, has been validated using the laboratory measurements. The performance of the numerical model is dependent on sediment transport functions. In addition, the performance of the proposed numerical model has been verified with existing numerical models on prediction of bed level variations. The proposed numerical model with recommended sediment transport function has been found to perform better than the existing numerical models on bed level variations of uniform sediment beds.
Keywords
Numerical Model, Aggradation, Alluvial Channel, Uniform Sediments, Transport Functions.
User
Font Size
Information
- Garde, R. J. and Ranga Raju, K. G., Mechanics of Sediment Transportation and Alluvial Stream Problems, New Age Publishers, New Delhi, 2000.
- Adachi, S. and Nakato, T., Changes of top-set bed in a silted reservoir. 13th Congress, IAHR, 5-1, 1969, pp. 269–272.
- deVries, M., River bed variation-aggradation and degradation. In International Seminar on Hydraulics of Alluvial Streams, IAHR, Delft, the Netherlands, 1973.
- Bhamidipaty, S. and Shen, H. W., Laboratory study of degradation and aggradation. J. Waterways, Harbours Coastal Eng. Div., 1971, 97(4), 615–630.
- Soni, J. P., Garde, R. J. and Ranga Raju, K. G., Aggradation in streams due to overloading. J. Hydraul. Eng., 1980, 106(1), 117–131.
- Mehta, P. J., Garde, R. J. and Ranga Raju, K. G., Transient bed profiles in aggrading streams. In Proceeding of 2nd International Conference on River Sedimentation, Nanjing, China, 1983.
- Jain, S. C., River bed aggradation due to over loading. J. Hydraul. Eng., 1981, 107(1), 120–124.
- Seal, R., Paola, C., Parker, G., Southard, J. B. and Wilcock, P. R., Experiments on downstream fining of gravel. I: narrow-channel runs. J. Hydraul. Eng., 1997, 123(10), 874–884.
- Carlos, M., Escobar, T., Paola, C., Parker, G., Wilcock, P. and Southard, J., Experiments on downstream fining of gravel. II: wide and sandy runs. J. Hydraul. Eng., 2000, 126(3), 198–208.
- Thomas, W. A. and Prasuhn, A. L., Mathematical modeling of scour and deposition. J. Hydr. Div., 1977, 103(8), 851–863.
- Cunge, J. A., Holly, F. M. and Verwey, A., Practical Aspects of Computational River Hydraulics, Pitman Advanced Publishing Program, London, 1980.
- Karim, M. F., Kennedy, J. F., IALLUVIAL: a computer-based flow and sediment routing for alluvial streams and its application to the Missouri River, Iowa. Inst. Hydraul. Res., Rep. No. 250, The Univ. of Iowa, Iowa City, Iowa, 1982.
- Chang, H. H., Modeling of river channel changes. J. Hydraul. Eng., 1984, 110(2), 157–172.
- Lyn, D. A., Unsteady sediment transport modelling. J. Hydraul. Eng., 1987, 113(1), 1–15.
- Cui, Y., Parker, G. and Paola, C., Numerical simulation of aggradation and downstream fining. J. Hydraul. Res., 1996, 34(2), 195–204.
- Lyn, D. A. and Goodwin, S. M., Stability of a general Preissmann scheme. J. Hydraul. Eng., 1987, 113(1), 16–28.
- Bhallamudi, S. M. and Chaudhry, H. M., Numerical modeling of aggradation and degradation in alluvial channel. J. Hydraul. Eng., 1991, 117(9), 1145–1164.
- Alcrudo, F., Garcia-Navarro, P. and Saviron, J. M., Flux difference splitting for 1D open channel flow equations. Int. J. Numer. Meth. Fluids, 1992, 14, 1009-1018.
- Kassem, A. M. and Chaudhry, M. H., Comparison of coupled and semicoupled numerical models for alluvial channels. J. Hydraul. Eng., 1998, 124(8), 794–802.
- Tayfur, G. and Singh, V. P., Kinematic wave model for transient bed profiles in alluvial channels under non-equilibrium conditions. Water Resour. Res., 2007, 43(12); doi:10.1029/2006WR005681.
- Tayfur, G. and Singh, V. P., Transport capacity models for unsteady and non-equilibrium sediment transport in alluvial channels. Comput. Electron. Agric., 2012, 86, 26–33; doi:10.1016/j.compag.2011.12.005.
- Goutiere, L., Soares-Frazao, S., Savary, C., Laraichi, T. and Zech, Y., One-dimensional model for transient flows involving bed-load sediment transport and changes in flow regimes. J. Hydraul. Eng., 2008, 134(6), 726–735.
- Schippa, L. and Pavan, S., Bed evolution numerical model for rapidly varying flow in natural streams. Comput. Geosci., 2009, 35(2), 390–402.
- Rahuel, J. L., Holly, F. M., Chollet, J. P., Belludy, P. and Yang, G., Modelling of river bed evolution for bed load sediment mixtures. J. Hydraul. Eng., 1989, 115(11), 1521–1542.
- Holly, F. and Rahuel, J., New numerical physical framework for mobile-bed modelling, part I: numerical and physical principles. J. Hydraul. Res., 1990, 28(4), 401–416.
- Holly, F. and Rahuel, J., New numerical physical framework for mobile-bed modelling, part II: test applications. J. Hydraul. Res., 1990, 28(4), 545–564.
- Correia, L. R. P., Krishnappan, B. G. and Graf, W. H., Fully coupled unsteady mobile boundary flow model. J. Hydraul. Eng., Proc., 1992, 118(3), 476–494.
- Saiedi, S., Coupled modeling of alluvial flows. J. Hydraul. Eng., 1997, 123(5), 440–446.
- Park, I. and Jain, S. C., River bed profiles with imposed sediment load. J. Hydraul. Eng., 1986, 112(4), 267–279.
- Wu, W., Depth-averaged two-dimensional numerical modelling of unsteady flow and nonuniform sediment transport in open channels. J. Hydraul. Eng., 2004, 130(10), 1013–1024.
- Saiedi, S., Experience in design of a laboratory flume for sediment studies. Int. J. Sediment Res., Beijing, China, 1993, 8(3), 89–101.
- Yen, C.-L., Chang, S.-Y. and Lee, H.-Y., Aggradation-degradation process in alluvial channels. J. Hydraul. Eng., 1992, 118(12), 1651–1669.
- Foster, G. R., Modelling the erosion process, in hydrologic modelling of small watersheds (eds Haan, C. T., Johnson, H. P. and Brakensiek, D. L.) Am. Soc. of Agric. Eng. Monograph No. 5, St. Joseph, Michigan, 1982, pp. 295–380.
- Tayfur, G. and Singh, V. P., Simulating transient sediment waves in aggraded alluvial channels by double-decomposition method. J. Hydrologic Eng., 2011, 16(4), 362–370.
- Adomian, G., A new approach to nonlinear partial differential equations. J. Math. Anal. Appl., 1984, 102, 420–434.
- Adomian, G., A review of decomposition method in applied mathematics. J. Math. Anal. Appl., 1988, 135, 501–544.
- Rahman, M. A. and Matin, M. A., Numerical modelling of bed level changes of alluvial river. J. Civil Eng. (IEB), 2010, 38(1), 53–64.
- Colby, B. R., Discharge of sands and mean–velocity relationships in sand bed streams. U.S. Geological Survey Professional Paper 462-A, US Geological Survey, Washington, DC, 1964.
- Begin, Z. B., Meyer, D. F. and Schumm, S. A., Development of longitudinal profiles of alluvial channels in response to base-level lowering. Earth Surf. Processes Land Forms, 1981, 6(1), 49–68.
- Meyer, P. E. and Muller, R., Formulas for bed load transport. In Proceeding 2nd Congress of IAHR, Appendix-2, Stockholm 7–9, Sweden, 1948, pp. 39–64.
- Tayfur, G. and Singh, V. P., Kinematic wave model of bed profiles in alluvial channels. Water Resour. Res., 2006, 42(6), 1–13.
- Guy, H. P., Simons, D. B. and Richardson, E. V., Summary of alluvial channel data from flume experiments. 1956–1961, US Geol. Surv. Prof. Pap., 462–I, 1966, p. 96.
- Zhang, H. and Kahawita, R., Nonlinear model for aggradation in alluvial channels. J. Hydraul. Eng., 1987, 113(3), 353–369.
- Cao, Z., Pender, G., Wallis, S. and Carling, P., Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng., 2004, 130(7), 689–703.
- MacCormack, R. W., An efficient numerical method for solving the time dependent compressible Navier-Stokes equations at high Reynolds number. Computing in Applied Mechanics; A77-46133 21–59, ASME, 49–64; In Proceedings of the Winter Annual Meeting, New York, 1976.
- Garcia–Navarro, P., Alcrudo, F. and Saviron, J. M., 1-D Open-channel flow simulation using TVD – MacCormack scheme. J. Hydraul. Eng., 1992, 118(10), 1359–1372.
- Ferreira, R. M. and Leal, J. G., 1-D mathematical modeling of the instantaneous dam-break flood wave over mobile bed: application of TVD and flux splitting schemes. CADAM Project meeting, Munich, Germany, 1998.
- Alcrudo, F. and Garcia-Navarro, P., A high resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. Int. J. Numer. Meth. Fluids, 1993, 16(6), 489–505.
- Einstein, H. A., The bed-load function for sediment transport in open channel flows. US Dept. of Agric., Soil Cons. Serv., Tech. Bull. No. 1026, 1950.
- Brown, C. B., Sediment Transportation, Chapter XII Engineering Hydraulics (ed. H. Rouse), John Wiley and Sons, New York, 1950.
- Ashida, K. and Michiue, M., Hydraulic resistance of flow in an alluvia bed and bed load transport rate. In Proceedings of Japan Society of Civil Engineers, 1972, p. 206.
- Ackers, P. and White, W. R., Sediment transport-new approach and analyses. J. Hydr. Div., 1973, 99(11), 2041–2060.
- Engelund, F. and Hansen, E., A monograph on sediment transport in alluvial streams. Report by Teknisk Forlag, Skelbrekgade 4, Copenhagen V, Denmark, 1967.
- Brownlie, W. R., Unsteady Sediment Transport Modeling. In Proceedings of the Water Forum. ASCE, 1981, 81(II), 1193–1200.
- Karim, M. F. and Kennedy, J. F., Computer based predictors for sediment discharge and friction factor of alluvial streams. In Proceedings of 2nd International Symposium on River Sedimentation, Cot.-Nov., Nanjing, China, 1983.
- Misri, R. L., Garde, R. J. and Ranga Raju, K. G., Bed load transport of coarse nonuniform sediment. J. Hydraul. Eng., 1984, 110(3), 312–328.
- Van Rijn, Sediment transport Part-I; bed load transport. J. Hydraul. Eng., 1984, 110(10), 1431–1456.
- Samaga, B. R., Ranga Raju, K. G. and Garde, R. J., Bed load transport of sediment mixtures. J. Hydraul. Eng., 1986, 112(11), 1003–1018.
- Samaga, B. R. Ranga Raju, K. G. and Garde, R. J., Suspended load transport of sediment mixtures. J. Hydraul. Eng., 1986, 112(11), 1019–1035.
- Hanes, D. M., Grain flows and bed-load sediment transport: review and extension. Acta Mech., 1986, 63(1–4), 131–142.
- Nielsen, P., Coastal bottom boundary layers and sediment transport. World Scientific, 1992, 4.
- Wong, M. and Parker, G., Reanalysis and correction of bed load relation of Meyer–Peter and Muller using their own database. J. Hydraul. Eng., 2006, 132(11), 1159–1168.
- Mutreja, K. N., Applied Hydrology, First Edition, McGraw-Hill Publishing Company Ltd, New Delhi, 1986.
- Velikanov, M. A., Gravitational theory of sediment transport (in Russian). J. Sci. Soviet Union, 1954, 4.
- Bridge, J. S. and Dominic, D. F., Bed load grain velocities and sediment transport rates. Water Resour. Res., 1984, 20(4), 476–490.
- Dietrich, W. E., Settling velocity of natural particles. Water Resour. Res., 1982, 18(6), 1615–1626.
Abstract Views: 338
PDF Views: 126