Open Access Open Access  Restricted Access Subscription Access

Electrode Materials for Supercapacitors Synthesized By Sol–Gel Process


Affiliations
1 Shri S.H. Kelkar College of Arts, Commerce and Science, Devgad, Sindhudurg - 416 613, India
 

This review article on synthesis of various carbonaceous and transition metal oxide based supercapacitor electrode materials and their electrochemical performance shows that though a potential method, the sol–gel process needs to be extensively explored and practiced on a large extent. The carbonaceous materials possess high electrochemical stabilities but they demonstrate lower capacitance compared to the ruthenium-based materials. Overall excellence in electrochemical behaviour was exhibited by a binary metal oxide NiCoO4 in thin film form with a value of 2157 F/g.

Keywords

Specific Capacitance, Sol–Gel Process, Supercapacitor Materials.
User
Notifications
Font Size

  • Wang, G., Zhang, L. and Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41, 797–828.
  • Johnson, D. W., Sol–gel processing of ceramics and glass. Ceramic Bull., 1985, 64(2), 1597–1602.
  • Turner, C. W., Sol–gel process–principles and applications. Ceramic Bull., 1991, 70, 1487–1490.
  • Hamdani, M., Singh, R. N. and Chartier, P., Co3O4 and co-based spinel oxides bifunctional oxygen electrodes. Int. J. Electrochem. Sci., 2010, 5, 556–577.
  • Jagadale, A. D., Kumbhar, V. S. and Lokhande, C. D., Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. J. Colloid Interf. Sci., 2013.
  • Balakrishnan, A. and Subramaniam, K. R. V. (eds), Nanostructured Ceramic Oxides for Supercapacitor Applications, CRC Press, Taylor & Francis Group, ISBN 13: 978-1-4665-7691-9, 2014, pp. 119–145.
  • Wang, F., Xiao, S., Hou, Y., Hu, C., Liu, L. and Wu, Y., Electrode materials for aqueous asymmetric supercapacitors. RSC Adv., 2013, 3, 13059–13084.
  • Lokhande, C. D., Dubal, D. P. and Joo, Oh-Shim, Metal oxide thin film based supercapacitors. Curr. Appl. Phys., 2011, 11, 255–270.
  • Kiamahalleh, M. V., Zein, S. H. S., Najafpour, G., Sata, S. A. and Buniran, S., Multiwalled carbon nanotubes based nanocomposits for supercapacitors: A review of electrode materials. Nano: Brief Rep. Rev., 2012, 7, 1230002-27.
  • Schneuwly, A. and Gallay, R., Properties and applications of supercapacitors from the state-of-the-art to future trends. Proceedings of the Forty-Second International PCIM 2000 Power Electronics Conference, Adams/Intertec International, 2000, ISBN: 978-0931033780, p. 445.
  • Mittal, A. K. and Kumar, M. J., Electrochemical double layer capacitors featuring carbon nanotubes. In Encyclopedia of Nanoscience and Nanotechnology (ed. Nalwa, H. S.), 2011, vol. 13, pp. 263–271.
  • Jayalekshmi, S. and Anand Puthirath, Supercapacitors: Fundamental Aspects, Nanostructured Ceramic Oxides for Supercapacitor Applications, 2014; doi:10.1016/j.jpowsour.2010.06.036.
  • Inagaki, M., Konno, H. and Tanaike, O., Carbon materials for electrochemical capacitors. J. Power Sources, 2010, 195, 7880–7903.
  • Zhang, L. L. and Zhao, X., Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, 38, 2520–2531.
  • Conway, B. E., Electrochemical Supercapacitors, Springer US, softcover 1999, ISBN 978-1-4757-3060-9.
  • Frackowiak, E., Lota, G., Machnikowski, J., Vix-Guterl, C. and Beguin, F., Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim. Acta, 2006, 51, 2209–2214.
  • Chuang, C. M., Huang, C. W., Teng, H. and Ting, J. M., Effects of carbon nanotube grafting on the performance of electric double layer capacitors. Energy Fuels, 2010, 24, 6476–6482.
  • Chang, Y. M., Wu, C. Y. and Wu, P. W., Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors. J. Power Sources, 2013, 223, 147–154.
  • Chuan, L., Ritter, J. A. and Popov, B. N., Correlation of double-layer capacitance with the pore structure of sol–gel derived carbon xerogels. J. Electrochem. Soc., 1999, 146, 3639–3643.
  • Fang, B. and Binder, L., A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J. Power Sources, 2006, 163, 616–622.
  • Li, J., Wang, X., Huang, Q., Gamboa, S. and Sebastian, P. J., Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources, 2006, 158, 784–788.
  • Liu, N., Shen, J. and Liu, D., Activated high specific surface area carbon aerogels for EDLCs. Microporous Mesoporous Mater., 2013, 167, 176–181.
  • Liu, D., Shen, J., Liu, N., Yang, H. and Du, A., Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors, Electrochim. Acta, 2013, 89, 571–576.
  • Chuan, L., Ritter, J. A. and Popov, B. N., Development of carbon-metal oxide supercapacitors from sol–gel derived carbon-ruthenium xerogels. J. Electrochem Soc., 1999, 146, 3155–3160.
  • Burke, A., Ultracapacitors: why, how, and where is the technology. J. Power Sources, 2000, 91, 37–50.
  • Frackowiak, E., Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys., 2007, 9, 1774–1785.
  • Li, W. C., Lu, A. H. and Guo, S. C., Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon, 2001, 39, 1989–1994.
  • Kim, S. J., Hwang, S. W. and Hyun, S. H., Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci., 2005, 40, 725–731.
  • Schmitt, C., Probstle, H. and Fricke, J., Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids, 2001, 285, 277–282.
  • Job, N., Pirard, R., Marie, J. and Pirard, J.-P., Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon, 2004, 42, 619–628.
  • Calvo, E. G., Lufrano, F., Staiti, P., Brigandì, A., Arenillas, A. and Menendez, J. A., Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J. Power Sources, 2013, 241, 776–782.
  • Mezzavilla, S., Zanell, C., Aravind, P. R., Volpe, C. D. and Soraru, G. D., Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties. J. Mater. Sci., 2012, 47, 7175–7180.
  • Zanto, E. J., Al-Muhtaseb, S. A. and Ritter, J. A., Sol–gel-derived carbon aerogels and xerogels: design of experiments approach to materials synthesis. Ind. Eng. Chem. Res., 2002, 41(13), 3151– 3162.
  • Park, D.-W., Canas, N. A., Schwan, M., Milow, B., Ratke, L. and Friedrich, K. A., A dual mesopore C-aerogel electrode for a high energy density supercapacitor. Curr. Appl. Phys., 2016, 16, 658–664.
  • Chang, Y.-M., Wu, C.-Y. and Wu, P.-W., Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors, J. Power Sources, 2013, 223, 147–154.
  • Baumann, T. F., Worsley, M. A., Han, T. Y-J. and Satcher, J. H., High surface area carbon aerogel monoliths with hierarchical porosity, J. Non Cryst. Solids, 2008, 354, 3513–3515.
  • Liu, X. et al., Porous structure design of carbon xerogels for advanced supercapacitor. Appl. Energy, 2015, 153, 32–40.
  • Su, F. et al., Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci., 2011, 4, 717–724.
  • Wang, C., Zhou, Y., Sun, L., Wan, P., Zhang, X. and Qiu, J., Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J. Power Sources, 2013, 239, 81–88.
  • Fang, B. and Binder, L., A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J. Power Sources, 2006, 163, 616–622.
  • Pekala, R. W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci., 1989, 24, 3221– 3227.
  • Jiang, J., Bao, L., Qiang, Y., Xiong, Y., Chen, J., Guan, S. and Chen, J., Sol–gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors. Electrochim. Acta, 2015, 158, 229–236.
  • Cui, Y., Xu, S., An, J. and Yan, S., Application of 3DG/CB/MnO2 electrode material in supercapacitors. Int. J. Electrochem. Sci., 2016, 11, 6297–6305.
  • Sun, G., Su, F., Xie, L., Guo, X. Q. and Chen, C., Synthesis of mesoporous carbon aerogels based on metal-containing ionic liquid and its application for electrochemical capacitors. J. Solid State Electrochem., doi:10.1007/s10008-016-3170-2.
  • Laheaa, A., Peikolainen, A.-L., Koel, M., Jänes, A. and Lust, E., Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance. J. Solid State Electrochem., 2012, 16, 2717–2722.
  • Chang, K.-H., Hua, C.-C. and Chou, C.-Y., Textural and pseudocapacitive characteristics of sol–gel derived RuO2⋅xH2O: hydrothermal annealing versus annealing in air. Electrochim. Acta, 2009, 54, 978–983.
  • Sathishkumar, K., Shanmugam, N., Kannadasan, N., Cholan, S. and Viruthagiri, G., Synthesis and characterization of Cu2+- doped NiO electrode for supercapacitor application. J. Sol–Gel Sci. Technol., 2015, 74, 621–630.
  • Meher, S. K., Justin, P. and Rao, G. R., Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interf., 2011, 3, 2063–2073.
  • Meher, S. K. and Rao, G. R., Ultralayered Co3O4 for highperformance supercapacitor applications. J. Phys. Chem. C, 2011, 115, 15646–15654.
  • Wang, X., Sumboja, A., Khoo, E., Yan, C. and Lee, P.-S., Cryogel synthesis of hierarchical Interconnected macro-/mesoporous Co3O4 with superb electrochemical energy storage. J. Phys. Chem. C, 2012, 116, 4930–4935.
  • Ghodbane, O., Pascal, J.-L. and Favier, F., Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. Am. Chem. Soc. Appl. Mater. Interf., 2009, 1, 1130–1139.
  • Beaudrouet, E., Le Gal La Salle, A. and Guyomard, D., Nanostructured manganese dioxides: synthesis and properties as supercapacitor electrode materials. Electrochim. Acta, 2009, 54, 1240– 1248.
  • Zheng, J. P., Cygan, P. J. and Jow, T. R., Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc., 1995, 142, 2699–2703.
  • McKeown, D. A., Hagans, P. L. and Carette, L. P. L., Structure of hydrous ruthenium oxides: implications for charge storage. J. Phys. Chem. B, 1999, 103, 4825–4832.
  • Panic, V. V., Dekanski, A. B. and Stevanovic, R. M., Sol–gel processed thin-layer ruthenium oxide/carbon black supercapacitors: a revelation of the energy storage issues. J. Power Sour., 2010, 195, 3969–3976.
  • Chen, W.-C., Hu, C.-C., Wang, C.-C. and Min, C.-K., Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors. J. Power Sources, 2004, 125, 292–298.
  • Khawaja, M. K., Sharma, S., Ram, M. K., Goswami, D. Y. and Stefanakos, E., Sol–gel synthesis of ruthenium oxide-graphene nanocomposites as electrode material for supercapacitor applications. Graphene, 2014, 2(2), 117–122.
  • Wu, Z. S., Wang, D.-W., Ren, W., Zhao, J., Zhou, G., Li, F. and Cheng, H.-M., Anchoring hydrous RuO2 on graphene sheets for high performance electrochemical capacitors. Adv. Funct. Mater., 2010, 10, 3595–3602.
  • Mitra, S., Lokesh, K. S. and Sampath, S., Exfoliated graphite– ruthenium oxide composite electrodes for electrochemical supercapacitors. J. Power Sources, 2008, 185, 1544–1549.
  • Kahram, M., Asnavandi, M. and Dolati, A., Synthesis and electrochemical characterization of sol–gel-derived RuO2/carbon nanotube composites. J. Solid State Electrochem., 2014, 18, 993– 1003.
  • Long, J. W., Swider, K. E., Merzbacher, C. I. and Rolison, D. R., Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir, 1999, 15, 780–785.
  • Padmanathan, N. and Selladurai, S., Electrochemical capacitance of porous NiO–CeO2 binary oxide synthesized via sol–gel technique for supercapacitor. Ionics, 2014, 20, 409–420.
  • Wei, T.-Y., Chen, C.-H., Chang, K.-H., Lu, S.-Y. and Hu, C.-C., Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater., 2009, 21(14), 3228–3233.
  • Wang, X., Sumboja, A., Khoo, E., Yan, C. and Lee, P. S., Cryogel synthesis of hierarchical interconnected macro-/mesoporous Co3O4 with superb electrochemical energy storage. J. Phys. Chem. C, 2012, 116, 4930–4935.
  • Cheng, J., Cao, G.-P. and Yang, Y.-S., Characterization of sol– gel-derived NiOx xerogels as supercapacitors. J. Power Sources, 2006, 159, 734–741.
  • Wu, M., Gao, J., Zhang, S. and Chen, A., Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors. J. Porous Mater., 2006, 13, 407–412.
  • Kim, S.-I., Lee, J.-S., Ahn, H.-J., Song, H.-K. and Jang, J.-H., Facile route to an efficient NiO supercapacitor with a threedimensional nanonetwork morphology. Am. Chem. Soc. Appl. Mater. Interf., 2013, 5, 1596–1603.
  • Gawali, S. R. et al., Asymmetric supercapacitor-based on nanostructured Ce-doped NiO (Ce : NiO) as positive and reduced graphene oxide (rGO) as negative electrode. Chem. Select, 2016, 1, 3471–3478.
  • Kong, L.-B., Lu, C., Liu, M.-C., Luo, Y.-C., Kang, L., Li, X. and Walsh, F. C., The specific capacitance of sol–gel synthesized spinel MnCo2O4 in an alkaline electrolyte. Electrochim. Acta, 2014, 115, 22–27.
  • Hu, G., Tang, C., Li, C., Li, H., Wang, Y. and Gong, H., The sol–gel-derived nickel–cobalt oxides with high supercapacitor performances. J. Electrochem. Soc., 2011, 158(6), A695–A699.
  • Wei, T. Y., Chen, C. H., Chien, H. C., Lu, S. Y. and Hu, C. C., Cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater., 2010, 22, 347–351.
  • Wu, Y. Q., Chen, X. Y., Ji, P. T. and Zhou, Q. Q., Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta, 2011, 56, 7517–7522.
  • Zhu, Y. et al., Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties. J. Power Sources, 2014, 267, 888–900.
  • Liu, M.-C., Kong, L.-B., Lu, C., Li, X.-M., Luo, Y.-C. and Kang, L., A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl. Mater. Interf., 2012, 4, 4631–4636.
  • Liu, Y., Wang, N., Yang, C. and Hu, W., Sol–gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceram Int., 2016, 42, 11411–11416.
  • Wang, X., Yuan, A. and Wang, Y., Supercapacitive behaviors and their temperature dependence of sol–gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. J. Power Sources, 2007, 172, 1007–1011.
  • Wang, X., Wang, X., Huang, W., Sebastian, P. J. and Gamboa, S., Sol–gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sources, 2005, 40, 211–215.
  • Lin, C.-K., Chuang, K.-H., Lin, C.-Y., Tsay, C.-Y. and Chen, C.Y., Manganese oxide films prepared by sol–gel process for supercapacitor application. Surf. Coat Technol., 2007, 202, 1272–1276.
  • Pang, S.-C., Anderson, M. A. and Chapman, T. W., Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc., 2000, 147(2), 444–450; Pang, S.-C. and Anderson, M. A., Novel electrode materials for electrochemical capacitors: part II: material characterization of sol–gel-derived and electrodeposited manganese dioxide thin films. J. Mater. Res., 2000, 15(10), 2096–2116.
  • Reddy, R. N. and Reddy, R. G., Sol–gel MnO2 as an electrode material for electro chemical capacitors. J. Power Sources, 2003, 124, 330–337.
  • Kong L. B., Lu, C., Liu, M. C., Luo, Y. C., Kang, L., Li. X. H. and Walsh, F. C., The specific capacitance of sol–gel synthesized spinel MnCo2O4 in an alkaline electrolyte. Electrochim. Acta, 2014, 115, 22–27.
  • Chen, C.-Y., Wang, S.-C., Tien, Y.-H., Tsai, W.-T. and Lin, C.-K., Hybrid manganese oxide films for supercapacitor application prepared by sol–gel technique. Thin Solid Films, 2009, 518, 1557–1560.
  • Wu, N. L., Nanocrystalline oxide supercapacitors. Mater. Chem. Phys., 2002, 75, 6–11.
  • Hu, C.-C., Wang, C.-C. and Chang, K.-H., A comparison study of the capacitive behavior for sol–gel-derived and co-annealed ruthenium– tin oxide composites. Electrochim. Acta, 2007, 52(7), 2691– 2700.
  • Wu, M., Zhang, L., Wang, D., Xiao, C. and Zhang, X., Cathodic deposition and characterization of tin oxide on graphite for electrochemical supercapacitors. J. Power Sources, 2008, 175, 669– 674.
  • Yang, Y. et al., Sn@SnO2 attached on carbon spheres as additive-free electrode for high-performance pseudocapacitor. Electrochim. Acta, 2016, 209, 350–359.
  • Lorkit, P., Panapoy, M. and Ksapabutr, B., Iron oxide-based supercapacitor from ferratrane precursor via sol–gel-hydrothermal process. Energy Proc., 2014, 56, 466–473.
  • Laberty-Robert, C., Long, J. W., Lucas, E. M., Pettigrew, K. A., Stroud, R. M., Doescher, M. S. and Rolison, D. R., Sol–gelderived ceria nanoarchitectures: synthesis, characterization and electrical properties. Chem. Mater., 2006, 18(1), 50–58.
  • Wu, Y., Gao, G. and Wu, G., Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J. Mater. Chem. A, 2015, 3, 1828–1832.
  • Gurunathan, K. and Manthiram, A., Sol–gel synthesis of SnVO4 for supercapacitor. International Materials Research Congress, Cancun, Mexico, 2002.
  • Devaraj, S., Kuezma, M., Ng, C. T. and Balaya, P., Sol–gel derived nanostructured Li2MnSiO4/C cathode with high storage capacity. Electrochim. Acta, 2013, 102, 290–298.
  • Naoi, K., Ishimoto, S., Isobe, Y. and Aoyagi, S., High-rate nanocrystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources, 2010, 195, 6250–6254.
  • Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., Lu, X., Choi, D., Lemmon, J. P. and Liu, J., Electrochemical energy storage for green grid. Chem. Rev., 2011, 111, 3577–3613.
  • Ghosh, A. and Lee, Y. H., Carbon-based electrochemical capacitors. Chem. Sus. Chem., 2012, 5, 480–499.
  • Basnayaka, P. A., Ram, M. K., Stefanakos, L. and Kumar, A., Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical impedance studies, Graphene, 2013, 2, 81–87.
  • Ketkar, S., Ram, M., Kumar, A., Weller, T. and Hoff, A., Stabilization of graphene-polyaniline based nanocomposite electrodes using barium strontium titanate for supercapacitor application. AIP Conference Proceedings, 2012.

Abstract Views: 490

PDF Views: 134




  • Electrode Materials for Supercapacitors Synthesized By Sol–Gel Process

Abstract Views: 490  |  PDF Views: 134

Authors

Sunetra Dhere
Shri S.H. Kelkar College of Arts, Commerce and Science, Devgad, Sindhudurg - 416 613, India

Abstract


This review article on synthesis of various carbonaceous and transition metal oxide based supercapacitor electrode materials and their electrochemical performance shows that though a potential method, the sol–gel process needs to be extensively explored and practiced on a large extent. The carbonaceous materials possess high electrochemical stabilities but they demonstrate lower capacitance compared to the ruthenium-based materials. Overall excellence in electrochemical behaviour was exhibited by a binary metal oxide NiCoO4 in thin film form with a value of 2157 F/g.

Keywords


Specific Capacitance, Sol–Gel Process, Supercapacitor Materials.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi3%2F436-449