Open Access Open Access  Restricted Access Subscription Access

Forest Cover Monitoring and Prediction in A Lesser Himalayan Elephant Landscape


Affiliations
1 Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun - 248 001, India
 

We have monitored the forest cover depletion in parts of Assam and Arunachal Pradesh over an area of 42,375 km2 in an elephant landscape falling in the Lesser Himalaya, North East India and report the results here. The US Army topographic maps (1924) and multi-date satellite images (1975, 1990, 2000 and 2009) were visually interpreted on-screen for post-classification comparison and forest cover change detection. The exercise showed continuous high loss of forest cover during the study period. A land area having 17,846.27 km2 forest in 1924 was depleted to 12,514.56 km2 by 1975, 11,861.75 km2 by 1990, 10,808.92 km2 by 2000 and 10,256.58 km2 by 2009, thereby indicating a constant decrease in forest cover by 12.59%, 1.54%, 2.48% and 1.31% respectively. The total loss in forest cover was estimated to be about 7590 km2 from 1924 to 2009. The Cellular Automata Markov Model has predicted a further likely decrease of 9007.14 km2 by 2028. In general, more districts of Assam than Arunachal Pradesh and more plains than hills faced deforestation. We have identified increasing human population and subsequent demand on the land for cultivation as major reasons for forest cover depletion.

Keywords

Change Detection, Deforestation, Elephant Landscape, North East India, Satellite Images.
User
Notifications
Font Size

  • Ghazoul, J. and Evans, J., Deforestation and Land Clearing, Encyclopedia of Biodiversity, Academic Press, London, UK, 2001, vol. 2.
  • Rowe, R., Sharma, N. P. and Browder, J., Deforestation: problems, causes and concerns. In Managing the World’s Forests: Looking for Balance between Conservation and Development (ed. Sharma, N. P.), Kendall/Hunt, Dubuque, Iowa, USA, 1992, pp. 33–45.
  • Millennium Ecosystem Assessment, Ecosystems and Human Wellbeing: Synthesis, Island Press, Washington, DC, USA, 2005.
  • Sala, O. E. et al., Global biodiversity scenarios for the year 2100. Science, 2000, 287, 1770–1774.
  • Woodwell, G. M., Hobbie, J. E., Houghton, R. A., Melillo, J. M., Moore, B., Peterson, B. J. and Shaver, G. R., Global deforestation: contribution to atmospheric carbon dioxide. Science, 1983, 222, 1081–1086.
  • Reddy, C. S. et al., Quantification and monitoring of deforestation in India over eight decades (1930–2013). Biodivers. Conserv., 2016, 25(1), 93–116.
  • Puyravaud, J. P., Davidar, P. and Laurance, W. F., Cryptic loss of India's native forests. Science, 2010, 329(5987), 32.
  • Srivastava, S., Singh, T. P., Kushwaha, S. P. S. and Roy, P. S., Mapping of large-scale deforestation in Sonitpur district, Assam. Curr. Sci., 2002, 82(12), 1479–1484.
  • Kushwaha, S. P. S. and Hazarika, R., Assessment of habitat loss in Kameng and Sonitpur Elephant Reserves. Curr. Sci., 2004, 87(10), 1447–1453.
  • Chartier, J., Zimmermann, A. and Ladle, R. J., Habitat loss and human-elephant conflict in Assam, India: does a critical threshold exist? Oryx, 2011, 45(4), 528–533.
  • Menon, V., Tiwari, S. K., Ramkumar, K., Kyarong, S., Ganguly, U. and Sukumar, R., Right of Passage: Elephant Corridors of India, Conservation Reference Series No. 3, Wildlife Trust of India, New Delhi, 2017, 2nd edn.
  • Sukumar, R., A brief review of the status, distribution and biology of wild Asian elephants, Elephas maximus. Int. Zoo Yearb., 2006, 40(1), 1–8.
  • Sukumar, R., The Asian Elephant: Ecology and Management, Cambridge University Press, Cambridge, UK, 1989.
  • Lele, N. and Joshi, P. K., Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environ. Monitor. Assess., 2009, 156(1–4), 159–170.
  • Kumar, R., Nandy, S., Agarwal, R. and Kushwaha, S. P. S., Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecol. Indic., 2014, 45, 444–455.
  • Nandy, S., Kushwaha, S. P. S. and Mukhopadhyay, S., Monitoring Chilla–Motichur corridor using geospatial tools. J. Nat. Conserv., 2007, 15(4), 237–244.
  • Nandy, S., Kushwaha, S. P. S. and Gaur, P., Identification of swamp deer (Cervus duvauceli duvauceli Cuvier) potential habitat in Jhilmil Jheel Conservation Reserve, Uttarakhand, India using multi-criteria analysis. Environ. Manage., 2012, 49(4), 902–914.
  • Li, S. H., Jin, B. X., Wei, X. Y., Jiang, Y. Y. and Wang, J. L., Using CA-Markov model to model the spatiotemporal change of land use/cover in Fuxian Lake for decision support. ISPRS Ann. Photogrmm. Remote Sensing Spat. Inf. Sci., 2015, 2(4), 163–168.
  • Rodgers, W. A. and Panwar, H. S., Planning a wildlife protected area network in India. Wildlife Institute of India, Dehradun, 1988, vol. I, pp. 53–58.
  • Singh, J. S. and Kushwaha, S. P. S., Forest biodiversity and its conservation in India. Int. For. Rev., 2008, 10(2), 292–304.
  • Champion, H. G. and Seth, S. K., A Revised Survey of the Forest Types of India, Manager of Publications, Government of India, 1968.
  • Bisht, S. S., An overview of elephant conservation in India. Indian For., 2002, 128, 121–136.
  • MoEF, Gajah: Securing the Future for Elephants in India, Elephant Task Force, Ministry of Environment and Forests, Government of India, 2010.
  • Tiwari, S. K., Kyarong, S., Choudhury, A., Williams, A. C., Ramkumar, K. and Deori, D., Elephant corridors of north-eastern India. In Right of Passage: Elephant Corridors of India (eds Menon, V. et al.), Conservation Reference Series No. 3, Wildlife Trust of India, New Delhi, 2017, 2nd edn, pp. 424–573.
  • MoEFCC, Synchronised elephant population estimation India 2017. Project Elephant Division, Ministry of Environment, Forest and Climate Change, Government of India, 2017.
  • Lillesand, T. M., Kiefer, R. W. and Chipman, J. W., Remote Sensing and Image Interpretation, John Wiley, New York, USA, 2007, 6th edn.
  • Puyravaud, J., Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manage., 2003, 177(1–3), 593–596.
  • Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A. and Brook, B. W., Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers. Conserv., 2007, 16(1), 153–163.

Abstract Views: 351

PDF Views: 122




  • Forest Cover Monitoring and Prediction in A Lesser Himalayan Elephant Landscape

Abstract Views: 351  |  PDF Views: 122

Authors

S. P. S. Kushwaha
Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun - 248 001, India
S. Nandy
Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun - 248 001, India
M. A. Shah
Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun - 248 001, India
R. Agarwal
Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun - 248 001, India
S. Mukhopadhyay
Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun - 248 001, India

Abstract


We have monitored the forest cover depletion in parts of Assam and Arunachal Pradesh over an area of 42,375 km2 in an elephant landscape falling in the Lesser Himalaya, North East India and report the results here. The US Army topographic maps (1924) and multi-date satellite images (1975, 1990, 2000 and 2009) were visually interpreted on-screen for post-classification comparison and forest cover change detection. The exercise showed continuous high loss of forest cover during the study period. A land area having 17,846.27 km2 forest in 1924 was depleted to 12,514.56 km2 by 1975, 11,861.75 km2 by 1990, 10,808.92 km2 by 2000 and 10,256.58 km2 by 2009, thereby indicating a constant decrease in forest cover by 12.59%, 1.54%, 2.48% and 1.31% respectively. The total loss in forest cover was estimated to be about 7590 km2 from 1924 to 2009. The Cellular Automata Markov Model has predicted a further likely decrease of 9007.14 km2 by 2028. In general, more districts of Assam than Arunachal Pradesh and more plains than hills faced deforestation. We have identified increasing human population and subsequent demand on the land for cultivation as major reasons for forest cover depletion.

Keywords


Change Detection, Deforestation, Elephant Landscape, North East India, Satellite Images.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi3%2F510-516