Open Access Open Access  Restricted Access Subscription Access

Bacillus amyloliquefaciens (VB7) with Diverse Antimicrobial Peptide Genes:A Potential Antagonist for the Management of Fairy Ring Spot in Carnations


Affiliations
1 Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, India
 

Fairy ring spot incited by Cladosporium echinulatum is an unexplored yet disastrous disease of carnation. Bacillus amyloliquefaciens (VB7) with 10 diverse antimicrobial peptide genes, effectively reduced fairy ring spot intensity to 6.44 (per cent disease index, PDI) and increased flower yield (196.61 Nos/m2) compared to control (PDI - 60.33; flower yield - 140.70 Nos/m2). Plants treated with tebuconazole (250 EC, emulsifiable concentrate) and alternated with mancozeb (75% WP, wettable powder) were much effective and reduced disease intensity up to 3.46 PDI. However, flower yield was comparatively lesser to the treatment of B. amyloliquefaciens (VB7). Results revealed that B. amyloliquefaciens out-performed fungicides in growth promotion.

Keywords

Antimicrobial Peptide, Bacillus amyloliquefaciens (VB7), Cladosporium echinulatum, Fairy Ring Spot.
User
Notifications
Font Size

  • Berkeley, M. J., Gard. Chron., 1870, 382.
  • De Vries, G. A., Contribution to the knowledge of the genus Cladosporium link ex fr, 1952, 49.
  • David, J. C., CMI descriptions of pathogenic fungi and bacteria no. 951. Mycopathologia, 1988, 103, 117-118.
  • Dhancholia, S., and Paul, Y. S., Fairy ring leaf spot of carnation from Himachal Pradesh. J. Mycol. Plant Pathol., 2001, 31(1), 91.
  • Sandoval, C., Terreros, V., and Schiappacasse, F., Control of Cladosporium echinulatum in carnation using bicarbonates and Trichoderma. Ciencia e investigacion agrarian, 2009, 36(3), 487-498.
  • Shrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N. and Ham, J. H., Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE, 2016, 11(1), e0146764.
  • Sharma, N. and Sharma, S., Control of foliar diseases of mustard by Bacillus from reclaimed soil. Microbiol. Res., 2008, 163(4), 408-413.
  • Garcia-Gutierrez, L., Zeriouh, H., Romero, D., Cubero, J., de Vicente, A. and Perez-Garcia, A., The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microbial Biotechnol., 2013, 6, 264-274.
  • Chung, S,. Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P., Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soil borne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol., 2008, 80, 115-123.
  • Mora, I., Cabrefiga, J. and Montesinos, E., Antimicrobial peptide genes in Bacillus strains from plant environments. Int. Microbiol., 2011, 14, 213-223.
  • Baruzzi, F., Quintieri, L., Morea, M. and Caputo, L., Antimicrobial compounds produced by Bacillus spp. and applications in food. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances (ed. MendezVilas, A.), Badajoz FORMATEX Microbiology Book Series. Formatex Research Centre, Spain, 2011, pp. 1102-1111.
  • Abriouel, H., Franz, C. M., Ben Omar, N. and Galvez, A., Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev., 2011, 35(1), 201-232.
  • McAuliffe, O., Ross, R. P. and Hill, C., Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev., 2001, 25, 285-308.
  • Zhao, X. and Kuipers, O. P., Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genome, 2016, 17, 882.
  • Datar, V. V. and Mayee, C. D., Assessment of losses in tomato yield due to early blight. Indian Phytopath., 1981, 34, 191-195.
  • Rivera, M. C. and Wright, E. R., First report of blight caused by Botrytis cinerea on china rose in Argentina. Online. Plant Health Progress, 2002; doi:10.1094/PHP-2002-0322-01-HN.
  • Arbelaez, G., Fungal and bacterial diseases on carnation in Colombia. ActaHortic., 1987, 216, 151-157.
  • Vinodkumar, S., Nakkeran, S., Renukadevi, P. and Malathi, V. G., Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front. Microbiol., 2017, 8, 446; doi:10.3389/fmicb.2017.00446.
  • Gomez, K. A. and Gomez, A. A., Statistical Procedure for Agricultural Research, John Wiley and Sons, New York, 1984.
  • Cedeno, L. and Carrero, C., Cladosporium echinulatum causing spots in leaves and flowers of carnation in Merida, Venezuela. Rev. Forestal Venezolana, 1997, 41(1), 91-92.
  • Arbelaez, G., Overview of the cut flowers pathology in Colombia. Acta Hortic., 1999, 482, 91-96.
  • Fernando, W. G. D., Ramarathnam, R. and Krishnamoorthy, A. S., Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem., 2005, 37, 955-964.
  • Ongena, M. and Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol., 2007, 16(3), 115-125.
  • Stein, T., Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol., 2005, 56, 845-857.
  • Montesinos, E., Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett., 2007, 270, 1-11.
  • Rajavel, M., Mitra, A. and Gopal, B., Role of Bacillus subtilis Bac B in the synthesis of Bacilysin. J. Biol. Chem., 2009, 46, 3188231892.
  • Lee, H. and Kim, H. Y., Lantibiotics, Class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol., 2011, 21, 229-235.
  • Silo-suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J., Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW 85. Appl. Environ. Microbiol., 1994, 60, 2023-2030.
  • Ahn, Y. J., Lee, S. H., Oh, H. S., Kim, H. T. and Lee, Y. H., Antifungal activity and mode of action of Gallarhois-derived phenolics against phytopathogenic fungi. Pest. Biochem. Physiol., 2004, 81, 105-112.
  • Ji, S. H., Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 2013, 41(4), 234-242.
  • Abdullah, M. T., Ali, N. Y. and Suleman, P., Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot., 2008, 27, 1354-1359.
  • Dheepa, R., Vinodkumar, S. Renukadevi, P. and Nakkeeran, S., Phenotypic and molecular characterization of chrysanthemum white rust pathogen Puccinia horiana (Henn) and the effect of liquid based formulation of Bacillus spp. for the management of chrysanthemum white rust under protected cultivation. Biol. Control, 2016, 103, 172-186.
  • Ahmad, B., Khan, I., Bashir, S. and Azam, S., Chemical composition and antifungal, phytotoxic, brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of Acacia modesta. J. Med. Plants Res., 2012, 6(31), 4653-4659.
  • Agoramoorthy, G., Chandrasekaran, M., Venkatesalu, V. and Hsu, M., Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz. J. Microbiol, 2007, 38(4), 739-742.
  • Brenna, A. B., Emanuele, Z., Jonathan, M. C. and Michael, G. G., Antifungal hydroxy fatty acids produced during Sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol., 2013, 79(6), 1866-1873.
  • Jiang, Y., Han, Q., Shen, R., Xang, X. and Wang, B., Synthesis and antimicrobial activity of some new 4#-pyrrolo[1,2-a] benzimidazoles. Chem. Res. Chin. Univ., 2014, 30, 755.
  • Marrez, D. and Sultan, Y., Antifungal activity of the cyanobacterium Microcystis aeruginosa against mycotoxigenic fungi. J. Appl. Pharm. Sci., 2016, 6(11), 191-198.
  • Kloepper, J. W., Plant growth-promoting rhizobacteria as biological control agents. In Soil Microbial Ecology: Applications in Agricultural and Environmental Management (ed. Metting Jr, F. B.), Marcell Deckker, New York, 1992, pp. 255-274.
  • Sharma, G. and Kaur, H., Antimicrobial activities of rhizobacterial strains of Pseudomonas and Bacillus strains isolated from rhizosphere soil of carnation (Dianthus caryophyllus cv. Sunrise). Indian J. Microbiol., 2010, 50, 229-232.
  • Schroth, M. N. and Hancock, J. G., Disease-suppressive soil and ischolar_main-colonizing bacteria. Science, 1982, 216, 1376-1381.
  • Idris, E. E., Iglesias, D. J., Talon, M. and Borriss, R., Tryptophandependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Interact., 2007, 20, 619-626.
  • Persello-Cartieaux, F., Nussaume, L. and Robaglia, C., Tales from the underground: molecular plant-rhizobacterial interactions. Plant Cell Environ., 2003, 26, 189-199.

Abstract Views: 371

PDF Views: 115




  • Bacillus amyloliquefaciens (VB7) with Diverse Antimicrobial Peptide Genes:A Potential Antagonist for the Management of Fairy Ring Spot in Carnations

Abstract Views: 371  |  PDF Views: 115

Authors

S. Vinodkumar
Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, India
S. Nakkeeran
Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, India

Abstract


Fairy ring spot incited by Cladosporium echinulatum is an unexplored yet disastrous disease of carnation. Bacillus amyloliquefaciens (VB7) with 10 diverse antimicrobial peptide genes, effectively reduced fairy ring spot intensity to 6.44 (per cent disease index, PDI) and increased flower yield (196.61 Nos/m2) compared to control (PDI - 60.33; flower yield - 140.70 Nos/m2). Plants treated with tebuconazole (250 EC, emulsifiable concentrate) and alternated with mancozeb (75% WP, wettable powder) were much effective and reduced disease intensity up to 3.46 PDI. However, flower yield was comparatively lesser to the treatment of B. amyloliquefaciens (VB7). Results revealed that B. amyloliquefaciens out-performed fungicides in growth promotion.

Keywords


Antimicrobial Peptide, Bacillus amyloliquefaciens (VB7), Cladosporium echinulatum, Fairy Ring Spot.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi8%2F1519-1524