Open Access Open Access  Restricted Access Subscription Access

Myco-Potash Solubilizers


Affiliations
1 Bhagwan Mahavir College of M Sc Biotechnology, Surat - 395 017, India
2 Department of Agricultural Microbiology, Anand Agricultural University, Anand - 388 110, India
 

This study was carried out to evaluate the efficacy of agriculturally beneficial fungi for potash solubilization and to develop myco-potash cultures for use in crop growth. In all six fungal cultures were utilized in the study, viz. Paecilomyces lilacinus, Tricoderma harzianum, Aspergillus wentii, Emericella nidulans, Verticillium lecanii and Tricoderma viride. Among them, A. wentii and T. viride were found to produce 3.3 and 3.65 mm solubilization index around the colony after 7 days of incubation (DAI) on Aleksandrov medium supplemented with mica as potash source. Whereas for agar medium supplemented with feldspar, maximum solubilization index was 2.5 mm (A. wentii), 2.55 mm (T. viride), 2.48 mm (V. lecanii) and 2.58 mm (P. lilacinus) 7 DAI. To reveal the mechanism of potash solubilization, A. wentii, T. viride, T. harzianum and V. lecanii were chosen for organic acid profiling using HPCL. A. wentii produced the highest amount of total organic acid (1847.775 μg/ml).

Keywords

Fungal Cultures, Myco-Potash, Organic Acids, Solubilization Index.
User
Notifications
Font Size

  • Sugumaran, P. and Janartham, B., Solubilization of potassium minerals by bacteria and their effect on plant growth. World J. Agric. Sci., 2007, 3(3), 350-355.
  • Sparks, D. L. and Huang, P. M., Physical chemistry of soil potassium. In Potassium in Agriculture (ed. Munson, R. D.), American Society of Agronomy, Madison, WI, USA, 1985, pp. 202-276.
  • Groudev, S. N., Use of heterotrophic micro-organisms in mineral biotechnology. Acta Biotechnol., 1987, 7, 299-306.
  • Friedrich, S., Platonova, N. P., Karavaiko, G. I., Stichel, E. and Glombitza, F., Chemical and microbiological solubilization of silicates. Acta Biotechnol., 1991, 11, 187-196.
  • Ullaman, W. J., Kirchman, D. L. and Welch, S. A., Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem. Geol., 1996, 132, 11-17.
  • Bennett, P. C., Choi, W. J. and Rogera, J. R., Microbial destruction of feldspars. Miner. Manage., 1998, 8(62A), 149-150.
  • Zahra, M. K., Monib, M. S., Abdel-Al, I. and Heggo, A., Significance of soil inoculation with silicate bacteria. Zentralbf Mikrobiol, 1984, 139(5), 349-357.
  • Vandevivere, P., Welch, S. A., Ullman, W. J. and Kirchman, D. L., Enhanced dissolution of silicate minerals by bacteria at nearneutral pH. Microb. Ecol., 1994, 27, 241-251.
  • Argelis, D. T., Gonzala, D. A., Vizcaino, C. and Gartia, M. T., Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 1993, 19, 129-147.
  • Vyas, P. and Gulati, A., Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol., 2009, 9(174), 1-15.
  • Lian, B., Fu, P. Q., Mo, D. M. and Liu, C. Q., A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral. Sin., 2002, 22, 179-183.
  • Liu, D., Lian, B. and Dong, H., Isolation of PaeniBacillussp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol. J., 2012, 29, 413-421.
  • Prajapati, K., Sharma, M. C. and Modi, H. A., Growth promoting effect of potassium solubilizing microorganisms on Okra (Abelmoscus esculantus). Int. J. Agric. Sci. Res., 2013, 3(1), 181-188.
  • Shukla, R. M. and Vyas, R. V., Phosphate solubilizing activity of mycopesticides. Int. J. Agric. Environ. Biotechnol., 2014, 7(4), 705-710.
  • Kushwaha, P., Vyas, R. V., Jhala, Y. K. and Patel, H. K., Diversity of plastic degrading microorganisms and their appraisal on biodegradable plastic. Appl. Ecol. Environ. Res., 2013, 11(3), 441-449.
  • Dabhi, B. K., Jhala, Y. K., Vyas, R. V. and Shelat, H. N., Bacterial and fungal biodegraders consortia for effective decomposition of wheat straw to obtain nutritive organic compost. J. Pure Appl. Microbiol., 2014, 8(6), 4793-4801.
  • Aleksandrov, V. G., Blagodyr, R. N. and Ivies, I. P., Liberation of phosphoric acid from apatite by silicate bacteria. Microbiol. Zh. (Kiev), 1967, 29, 111-114.
  • Hu, X. F., Chen, J. and Guo, J. F., Two phosphate- and potassiumsolubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J. Microbiol. Biotechnol., 2006, 22, 983-990.
  • Dinkci, N., Akalın, A. S., Gönc, S. and Unal, G., Isocratic reversephase HPLC for determination of organic acids in Kargı Tulum cheese. Chromatographia, 2007, 66, 45-49.
  • Sheng, X. F., Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillusedaphicus. Soil Biol. Biochem., 2005, 37, 1918-1922.
  • Li, F. C., Li, S., Yang, Y. Z. and Cheng, L. J., Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol. Mineral., 2006, 25, 440- 448.
  • Archana, D. S., Nandish, M. S., Savalagi, V. P. and Alagawadi, A. R., Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet, 2013, 10, 248-257.
  • Rosa-Magri, M. M., Avansini, S. H., Lopes-Assad, M. L., TaukTornisielo, S. M. and Ceccato-Antonini, S. R., Release of potassium from rock powder by the yeast Torulaspora globosa. Braz. Arch. Biol. Technol., 2012, 55(4), 577-582.
  • Qureshi, S. A., Qureshi, R. A., Tipre, D. R. and Dave, S. R., Dissolution of potassium from silicate mineral by Aspergillus strain. Int. Res. J. Environ. Sci., 2016, 5(2), 63-66.
  • Sheng, X. F., Xia, J. J. and Chen, J., Mutagenesis of the Bacillus strain NBT and its effect on growth of chili and cotton. Agric. Sci. China, 2003, 2, 40-41.
  • Styriakova, I., Styriak, I., Hradil, D. and Bezdicka, P., The release of iron bearing minerals and dissolution of feldspar by heterophic bacteria of Bacillusspecies. Ceram. Silikaty, 2003, 47(1), 20-26.
  • Argelis, D. T., Gonzala, D. A., Vizcaino, C. and Gartia, M. T., Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 1993, 19, 129-147.

Abstract Views: 297

PDF Views: 128




  • Myco-Potash Solubilizers

Abstract Views: 297  |  PDF Views: 128

Authors

B. K. Parida
Bhagwan Mahavir College of M Sc Biotechnology, Surat - 395 017, India
R. V. Vyas
Department of Agricultural Microbiology, Anand Agricultural University, Anand - 388 110, India
Y. K. Jhala
Department of Agricultural Microbiology, Anand Agricultural University, Anand - 388 110, India
S. Dasgupta
Bhagwan Mahavir College of M Sc Biotechnology, Surat - 395 017, India

Abstract


This study was carried out to evaluate the efficacy of agriculturally beneficial fungi for potash solubilization and to develop myco-potash cultures for use in crop growth. In all six fungal cultures were utilized in the study, viz. Paecilomyces lilacinus, Tricoderma harzianum, Aspergillus wentii, Emericella nidulans, Verticillium lecanii and Tricoderma viride. Among them, A. wentii and T. viride were found to produce 3.3 and 3.65 mm solubilization index around the colony after 7 days of incubation (DAI) on Aleksandrov medium supplemented with mica as potash source. Whereas for agar medium supplemented with feldspar, maximum solubilization index was 2.5 mm (A. wentii), 2.55 mm (T. viride), 2.48 mm (V. lecanii) and 2.58 mm (P. lilacinus) 7 DAI. To reveal the mechanism of potash solubilization, A. wentii, T. viride, T. harzianum and V. lecanii were chosen for organic acid profiling using HPCL. A. wentii produced the highest amount of total organic acid (1847.775 μg/ml).

Keywords


Fungal Cultures, Myco-Potash, Organic Acids, Solubilization Index.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi1%2F116-120