Open Access Open Access  Restricted Access Subscription Access

Multilayer Perceptron and Evolutionary Radial Basis Function Neural Network Models for Discrimination of HIV-1 Genomes


Affiliations
1 Mathematics and Computer Applications, Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal 462 003, India
 

High rate of mutation and frequent recombination cause evolution of HIV-1 very diverse and adaptive. Revealing the recombination patterns in HIV-1 is a computationally intensive problem. Techniques based on phylogenetic analysis are not suitable for genomelevel studies. Here we elucidate approaches based on multilayer perceptron and evolutionary radial basis function neural network for the analysis of 4130 HIV- 1 genomes. These techniques show remarkable improvement over other machine learning techniques used for such classification. The models outperformed other machine learning models having 92% classification accuracy. Multilayer perceptron achieved sensitivity and specificity of 82% and 96%, whereas radial basis function neural network achieved sensitivity and specificity of 78% and 98% on tenfold cross-validation respectively.

Keywords

Artificial Neural Network, HIV-1 Genome, Machine Learning, Multilayer Perceptron.
User
Notifications
Font Size

  • Safrit, J. T., Fast, P. E., Gieber, L., Kuipers, H., Dean, H. J. and Koff, W. C., Status of vaccine research and development of vaccines for HIV-1. Vaccine, 2016.
  • Cihlar, T. and Fordyce, M., Current status and prospects of HIV treatment. Curr. Opin. Virol., 2016, 18, 50–56.
  • Sharp, P. M. and Hahn, B. H., Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspect. Med., 2011, 1, a006841.
  • Zanini, F., Brodin, J., Thebo, L., Lanz, C., Bratt, G., Albert, J. and Neher, R. A., Population genomics of intrapatient HIV-1 evolution. eLife, 2016, 4, e11282.
  • Robertson, D. et al., HIV-1 nomenclature proposal. Science, 2000, 288, 55.
  • McCutchan, F. E., Global epidemiology of HIV. J. Med. Virol., 2006, 78, S7–S12.
  • Robertson, D. L., Hahn, B. H. and Sharp, P. M., Recombination in AIDS viruses. J. Mol. Evol., 1995, 40, 249–259.
  • Palella Jr, F. J. et al., Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl. J. Med., 1998, 338, 853–860.
  • Rambaut, A., Robertson, D. L., Pybus, O. G., Peeters, M. and Holmes, E. C., Human immunodeficiency virus: phylogeny and the origin of HIV-1. Nature, 2001, 410, 1047–1048.
  • Ntemgwa, M., Gill, M. J., Brenner, B. G., Moisi, D. and Wainberg, M. A., Discrepancies in assignment of subtype/recombinant forms by genotyping programs for HIV type 1 drug resistance testing may falsely predict superinfection. AIDS Res. Hum. Retroviruses, 2008, 24, 995–1002.
  • Wu, X., Cai, Z., Wan, X.-F., Hoang, T., Goebel, R. and Lin, G., Nucleotide composition string selection in HIV-1 subtyping using whole genomes. Bioinformatics, 2007, 23, 1744–1752.
  • Hoelscher, M. et al., Detection of HIV-1 subtypes, recombinants, and dual infections in East Africa by a multi-region hybridization assay. AIDS, 2002, 16, 2055–2064.
  • Dessimoz, C., Margadant, D. and Gonnet, G. H., DLIGHT–lateral gene transfer detection using pairwise evolutionary distances in a statistical framework. In Annual International Conference on Research in Computational Molecular Biology, Springer, Berlin, Heidelberg, 2008, pp. 315–330.
  • Truszkowski, J. and Brown, D. G., More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMS. BMC Bioinform., 2011, 12, 1.
  • Daubin, V., Lerat, E. and Perrière, G., The source of laterally transferred genes in bacterial genomes. Genome Biol., 2003, 4, R57.
  • Worning, P., Jensen, L. J., Nelson, K. E., Brunak, S. and Ussery, D. W., Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. Nucleic Acids Res., 2000, 28, 706–709.
  • Lawrence, J. G. and Ochman, H., Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA, 1998, 95, 9413–9417.
  • Jetzt, A. E., Yu, H., Klarmann, G. J., Ron, Y., Preston, B. D. and Dougherty, J. P., High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol., 2000, 74, 1234–1240.
  • Rozanov, M., Plikat, U., Chappey, C., Kochergin, A. and Tatusova, T., A web-based genotyping resource for viral sequences. Nucleic Acids Res., 2004, 32, W654–W659.
  • Wu, X. et al., Whole genome phyogeny construction via complete composition vectors. Int. J. Bioinform. Res. Appl., 2006, 2, 219– 248.
  • Thompson, K. and Charnigo, R., Parallel computing in genomewide association studies. J. Biometr. Biostat., 2015, 6(1), 1.
  • Eliuk, A. S., Keith Ruiter, B. and Pierre Boulanger, C., Classifying HIV-1 circulating recombinant forms. In Proceedings of the International Conference on Bioinformatics and Computational Biology (BIOCOMP), The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (World Comp), 2011, p. 1.
  • Dwivedi, A. K. and Chouhan, U., Comparative study of machine learning techniques for genome scale discrimination of recombinant HIV-1 strains. J. Med. Imaging Health Inf., 2016, 6, 425– 430.
  • Briesmeister, J. F., Los Alamos National Laboratory. Oak Ridge National Laboratory, MCNP-4B Monte Carlo N-Particle Transport Code System, Manual La-12625-M, version B, 2000, 4, 1997.
  • Mitchell, T. M., Machine Learning, McGraw Hill, Burr Ridge, IL, USA, 1997, 45.
  • Hoptroff, R. G., The principles and practice of time series forecasting and business modelling using neural nets. Neural Comput. Appl., 1993, 1, 59–66.
  • Dwivedi, A. K., Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput. Appl., 2016, 29(10), 685–693.
  • Dwivedi, A. K., Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput. Appl., 2016, 29(12), 1545–1554.
  • Dwivedi, A. K. and Chouhan, U., Comparative study of artificial neural network for classification of hot and cold recombination regions in Saccharomyces cerevisiae. Neural Comput. Appl., 2016, 29(2), 529–535.
  • Jones, A. J., Genetic algorithms and their applications to the design of neural networks. Neural Comput. Appl., 1993, 1, 32–45.
  • Venkatesan, D., Kannan, K. and Saravanan, R., A genetic algorithmbased artificial neural network model for the optimization of machining processes. Neural Comput. Appl., 2009, 18, 135– 140.
  • Radcliffe, N. J., Genetic set recombination and its application to neural network topology optimisation. Neural Comput. Appl., 1993, 1, 67–90.
  • Brown, M. P. et al., Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci., USA, 2000, 97, 262–267.
  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M. and Haussler, D., Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000, 16, 906–914.
  • Dwivedi, A. K. and Chouhan, U., Genome-scale classification of recombinant and nonrecombinant HIV-1 sequences using artificial neural network ensembles. Curr. Sci., 2016, 111, 853–860.
  • Yasdi, R., A literature survey on applications of neural networks for human–computer interaction. Neural Comput. Appl., 2000, 9, 245–258.
  • Xia, X. and Xie, Z., DAMBE: software package for data analysis in molecular biology and evolution. J. Hered., 2001, 92, 371–373.
  • Jenkins, G. M. and Holmes, E. C., The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res., 2003, 92, 1–7.
  • García-Pedrajas, N., Hervás-Martínez, C. and Ortiz-Boyer, D., Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evol. Comput., 2005, 9, 271– 302.
  • Yao, X. and Liu, Y., Making use of population information in evolutionary artificial neural networks. IEEE Trans. Syst. Man Cybern., Part B, 1998, 28, 417–425.
  • Haykin, S., Neural Networks: a Comprehensive Foundation, 1994. McMillan, New Jersey, USA, 2010.
  • Saha, A., Wu, C.-L. and Tang, D.-S., Approximation, dimension reduction, and nonconvex optimization using linear superpositions of Gaussians. IEEE Trans. Comput., 1993, 42, 1222–1233.
  • Lowe, D. and Broomhead, D., Multivariable functional interpolation and adaptive networks. Complex Syst., 1988, 2, 321–355.
  • Lee, C.-C., Chung, P.-C., Tsai, J.-R. and Chang, C.-I., Robust radial basis function neural networks. IEEE Trans. Syst., Man, Cybernetics, Part B, 1999, 29, 674–685.
  • Light, W. A., Some aspects of radial basis function approximation. In Approximation Theory, Spline Functions and Applications Springer, Dordrecht, 1992, pp. 163–190.
  • Rivas, V. M., Merelo, J., Castillo, P., Arenas, M. G. and Castellano, J., Evolving rbf neural networks for time-series forecasting with EVRBF. Inf. Sci., 2004, 165, 207–220.
  • Broomhead, D. S. and Lowe, D., Multivariate functional interpolation and adaptive networks. Complex Syst., 1988, 2, 321–355.
  • Vapnik, V., Statistical Learning Theory, Wiley New York, USA, 1998, vol. 3.

Abstract Views: 336

PDF Views: 126




  • Multilayer Perceptron and Evolutionary Radial Basis Function Neural Network Models for Discrimination of HIV-1 Genomes

Abstract Views: 336  |  PDF Views: 126

Authors

Ashok Kumar Dwivedi
Mathematics and Computer Applications, Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal 462 003, India
Usha Chouhan
Mathematics and Computer Applications, Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal 462 003, India

Abstract


High rate of mutation and frequent recombination cause evolution of HIV-1 very diverse and adaptive. Revealing the recombination patterns in HIV-1 is a computationally intensive problem. Techniques based on phylogenetic analysis are not suitable for genomelevel studies. Here we elucidate approaches based on multilayer perceptron and evolutionary radial basis function neural network for the analysis of 4130 HIV- 1 genomes. These techniques show remarkable improvement over other machine learning techniques used for such classification. The models outperformed other machine learning models having 92% classification accuracy. Multilayer perceptron achieved sensitivity and specificity of 82% and 96%, whereas radial basis function neural network achieved sensitivity and specificity of 78% and 98% on tenfold cross-validation respectively.

Keywords


Artificial Neural Network, HIV-1 Genome, Machine Learning, Multilayer Perceptron.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi11%2F2063-2070