Open Access Open Access  Restricted Access Subscription Access

Prevalence of Extended Spectrum Beta-Lactamases among Enterobacteriaceae Isolated from Intrahospital Patients in Serbia


Affiliations
1 University of Pristina, Kopaonicka St. bb, 38219 Lesak, Serbia
2 Creative classroom SENSA-S, Sveti Sava St. 52, 11550 Lazarevac, Serbia
 

The aim of this study was to determine the prevalence of extended spectrum beta-lactamases (ESBLs) production in hospital strains of Enterobacteriaceae isolated from various clinical specimens (urine, blood and wound swabs) from hospitalized patients at the Military Medical Academy, Belgrade, Serbia. During six months of study, a total of 1034 isolates of Enterobacteriaceae were tested for antimicrobial susceptibility and screened for ESBL production according to standard methods. The overall prevalence of ESBL production in the hospital isolates of Enterobacteriaceae was 57.4%. Among the isolates, minimum frequency of resistance was found for amikacin (25.2%), and maximum for ampicillin (84.5%). The strain resistant to imipenem could not be isolated. Resistance to the tested antibiotics was higher in ESBL producers than non-producers (P < 0.05). Among Escherichia coli isolates, the prevalence of ESBL production was less than 50% (33.9%). ESBLs were most often produced by isolates of Serratia spp. (85.2%) and Klebsiella spp. (81.8%). Blood specimens were the most common sources of ESBL-producing isolates (84.0%). These findings might help clinicians in deciding the appropriate empirical treatment for intrahospital patients and emphasize the increasing problem of antimicrobial resistance in Serbia.

Keywords

Antibiotic Resistance and Susceptibility, Enterobacteriaceae, Extended Spectrum Beta-Lactamases, Human Isolates.
User
Notifications
Font Size

  • Hidron, A. I., Edwards, J. R., Patel, J., Horan, T. C., Sievert, D. M., Pollock, D. A. and Fridkin, S. K., National healthcare safety network team; participating national healthcare safety network facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006–2007. Infect. Control Hosp. Epidemiol., 2008, 29, 996–1011.
  • Bronson, J. J. and Barrett, J. F., Quinolone, everninomycin, glycylcycline, carbapenem, lipopeptide and cephem antibacterials in clinical development. Curr. Med. Chem., 2001, 8, 1775–1793.
  • Mirović, V., Antibiotics and Basic Principles of their Clinical Application, Čigoja Press, Belgrade, Serbia, 2003.
  • Murray, P., Manual of Clinical Microbiology, ASM Press, Washington DC, USA, 1999, 7th edn.
  • Jacoby, G. A. and Munoz-Price, L. S., The new-beta-lactamases. N. Engl. J. Med., 2005, 352, 380–391.
  • Gniadkowski, M., Evolution of extended-spectrum betalactamases by mutation. Clin. Microbiol. Infect., 2008, 14(1), 11–32.
  • Lorian, V., Antibiotics in Laboratory Medicine, William and Wilkins, Baltimore, USA, 1996.
  • Schwaber, M. J. and Carmeli, Y., Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteriaemia: a systematic review and meta-analysis. J. Antimicrob. Chemother., 2007, 60, 913–920.
  • Weinstein, R. A., Nosocomial infection update. Emer. Infect. Dis., 998, 4, 416–420.
  • Endimiani, A. and Paterson, D. L., Optimizing therapy for infections caused by Enterobacteriaceae producing extended-spectrum beta-lactamases. Semin. Respir. Crit. Care Med., 2007, 28(6), 646–655.
  • Jeong, S. H., Bae, I. K., Lee, J. H., Sohn, S. G., Kang, G. H. and Jeon, G. J., Molecular characterization of extended-spectrum betalactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol., 2004, 42(7), 2902–2906.
  • Bush, K. and Jacoby, G., Updated functional classification of betalactamases. Antimicrob. Agents Chemother., 2010, 54, 969–976.
  • Dhillon, R. H. and Clark, J., ESBLs: a clear and present danger? Crit. Care Res. Pract., 2012, 2012, 625170.
  • Hyle, E. P. et al., Risk factor for increasing multidrug resistance among extended spectrum beta-lactamase producing E. coli and Klebsiella spp. Clin. Infect. Dis., 2005, 40, 1317–1324.
  • Rahal, J. J. et al., Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA, 1998, 280(14), 1233–1237.
  • Urban, C., Go, E., Mariano, N., Berger, B. J., Avraham, I., Rubin, D. and Rahal, J. J., Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J. Infect. Dis., 1993, 167(2), 448–451.
  • MacKenzie, F. M., Forbes, K. J., Dorai-John, T., Amyes, S. G. B. and Gould, I. M., Emergence of a carbapenem resistant Klebsiella pneumoniae. Lancet, 1997, 350, 783.
  • Müller, S., Oesterlein, A., Frosh, M., Abele-Horn, M. and Valenza, G., Characterization of extended-spectrum beta-lactamases and qnr plasmid-mediated quinolone resistance in German isolates of Enterobacter species. Microb. Drug Resist., 2011, 17(1), 99–103.
  • Lee, C. H., Liu, J. W., Li, C. C., Chien, C. C., Tang, Y. F. and Su, L. H., Spread of ISCRI elements containing blaDHA-1 and multiple antimicrobial resistance genes leading to increase of flomoxef resistance in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother., 2011, 55(9), 4058–4063.
  • Pitout, J. J., Infections with extended spectrum beta lactamase producing enterobacteriaceae. Drugs, 2010, 70, 313–333.
  • Yang, K. and Guglielmo, J., Diagnosis and treatment of extended spectrum and AmpC beta lactamase producing organisms. Ann. Pharmacother., 2007, 41, 1427–1435.
  • Sirot, J., Detection of extended-spectrum plasmid-mediated betalactamases by disk diffusion. Clin. Microbiol. Infect., 1996, 1, 35– 39.
  • Hussain, M. et al., Prevalence of class A and AmpC betalactamases in clinical Escherichia coli isolates from Pakistan Institute of Medical Science, Islamabad, Pakistan. Jpn. J. Infect. Dis., 2011, 64(3), 249–252.
  • Idowu, O. J., Onipede, A. O., Orimolade, A. E., Akinyoola, L. A. and Babalola, G. O., Extended-spectrum beta-lactamase orthopedic wound infections in Nigeria. J. Global. Infect. Dis., 2011, 3(3), 211–215.
  • Ho, P. L. et al., Occurrence and molecular analysis of extendedspectrum beta-lactamase-producing Proteus mirabilis in Hong Kong, 1999–2002. J. Antimicrob. Chemother., 2005, 55, 840– 845.
  • Gruteke, P. et al., Patterns of resistance associated with integrons, the extended-spectrum beta-lactamase SHV-5 gene, and a multidrug efflux pump of Klebsiella pneumoniae causing a nosocomial outbreak. J. Clin. Microbiol., 2003, 41(3), 1161–1166.
  • Paterson, D. L. et al., Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin. Infect. Dis., 2004, 39(1), 31–37.
  • Canton, R., Novais, A., Valverde, A., Machado, E., Peixe, L., Baquero, F. and Coque, T. M., Prevalence and spread of extendedspectrum beta-lactamase-producing Enterobacteriaceae in Europe. CMI, 2008, 14, 144–153.
  • Khanfar, H. S., Bindayna, K. M., Senok, A. C. and Botta, G. A., Extended spectrum beta-lactamases (ESBL) in Escherichia coli and Klebsiella pneumoniae: trends in the hospital and community settings. J. Infect. Dev. Ctries., 2009, 3(4), 295–299.
  • Tschudin-Sutter, S., Frei, R., Battegay, M., Hoesli, I. and Widmer, A. F., Extended-spectrum beta-lactamase-producing Escherichia coli in neonatal care unit. Emerg. Infect. Dis., 2010, 16(11), 1758– 1760.
  • Ndugulile, F., Jureen, R., Harthug, S., Urassa, W. and Langeland, N., Extended spectrum beta-lactamases among Gram-negative bacteria of nosocomial origin from an intensive care unit of a tertiary health facility in Tanzania. BMC Infect. Dis., 2005, 5, 86– 97.
  • Talbot, G. H., Bradley, J., Edwards, J. E., Gilbert, D., Scheld, M. and Bartlett, J. G., Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis., 2006, 42(5), 657–668.
  • Tumbarello, M. et al., Bloodstream infections caused by extendedspectrum beta-lactamase-producing Escherichia coli: risk factors for inadequate initial antimicrobial therapy. Antimicrob. Agents Chemother., 2008, 52(9), 3244–3252.
  • Ghafourian, S., Sadeghifard, N., Soheili, S. and Sekawi, Z., Extended spectrum beta-lactamases: definition, classification and epidemiology. Curr. Issues Mol. Biol., 2015, 17, 11–22.
  • Blomberg, B., Jureen, R., Manji, K. P., Tamim, B. S., Mwakagile, D. S. and Urassa, W. K., High rate of fatal cases of pediatric septicemia caused by Gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania. J. Clin. Microbiol., 2005, 43(2), 745–749.
  • Bochicchio, G. V. et al., In vitro susceptibilities of Escherichia coli isolated from patients with intra-abdominal infections worldwide in 2002–2004: results from SMART (Study for Monitoring Antimicrobial Resistance Trends). Surg. Infect., 2006, 7(6), 537–545.
  • Coque, T. M., Baquero, F. and Canton, R., Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance, 2008, 47, 1–11.
  • Lytsy, B., Enterobacteriaceae producing extended-spectrum betalactamases: aspects of detection, epidemiology and control. Doctoral dissertation, Uppsala Universitet, Uppsala, 2010, p. 57.
  • Clinical and Laboratory Standard Institute (CLSI), Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. CLSI document M100-S22, Wayne, PA, USA, 2012, vol. 32, no. 3.
  • Ibrahim, M. E., Bilal, N. E., Magzoub, M. A. and Hamid, M. E., Prevalence of extended-spectrum beta-lactamases-producing Escherichia coli from hospitals in Khartoum State, Sudan. Oman Med. J., 2013, 28(2), 116–120.
  • Koneman, E. W., Allen, S. D., Janda, W. M., Shcreckenberger, P. C. and Win, W. C., The Enterobacteriaceae. In Color Atlas and Textbook of Diagnostic Microbiology (ed. Lippincott, J. B.), J. B. Lippincott Co, Philadelphia, USA, 2006, 5th edn, pp. 211–302.
  • Jarlier, V., Nicolas, M. H., Fournier, G. and Philippon, A., Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev. Infect. Dis., 1988, 10(4), 867–878.
  • Kumar, M. S., Lakshmi, V. and Rajagopalan, R., Occurrence of extended spectrum beta-lactamases among Enterobacteriaceae spp. isolated at a tertiary care institute. Indian J. Med. Microbiol., 2006, 24(3), 208–211.
  • Okesola, O. A. and Fowotade, A., Extended-spectrum betalactamase production among clinical isolates of Escherichia coli. Int. Res. J. Microbiol., 2012, 3(4), 140–143.
  • Luzzaro, F. et al., Trends in production of extended-spectrumlactamases among enterobacteria of medical interest: report of the second Italian nationwide survey. J. Clin. Microbiol., 2006, 44(5), 1659–1664.
  • Abreu, A. G., Marques, S. G., Monteiro-Neto, V., Carvalho, R. M. and Goncalves, A. G., Nosocomial infection and characterization of extended-spectrum beta-lactamases-producing Enterobacteriaceae in Northeast Brazil. Rev. Soc. Bras. Med. Trop., 2011, 44(4), 441–446.
  • Sturenburg, E. and Dietrich, M., Extended-spectrum betalactamases: implications for the clinical microbiology laboratory, therapy and infection control. J. Infect., 2003, 47, 273–295.
  • Steward, C. D. et al., Ability of laboratories to detect emerging antimicrobial resistance in nosocomial pathogens: a survey of project ICARE laboratories. Diagn. Microbiol. Infect. Dis., 2000, 38(1), 59–67.
  • Goossens, H., MYSTIC program: summary of European data from 1997 to 2000. Diagn. Microbiol. Infect. Dis., 2001, 41(4), 183– 189.
  • Schmiedel, J., Falgenhauer, L., Domann, E., Bauerfeind, R., Prenger-Berninghoff, E., Imirzalioglu, C. and Chakraborty, T., Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol., 2014, 14, 187–197.
  • Shahcheraghi, F., Nasiri, S. and Noveiri, H., Detection of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli. Iran. J. Clin. Infect. Dis., 2009, 4(2), 65–70.
  • Tambić-Andrašević, A., Tambić, T., Katalinić-Janković, V., Pal, M. P., Bukovski, S. and Šoprek, S., In Antibiotic Resistance in Croatia, 2011 (eds Tambić-Andrašević, A. and Tambić, T.), The Croatian Academy of Medical Sciences, Zagreb, 2012.
  • Sorlózano, A., Gutiérrez, J., Luna, J. D., Oteo, J., Liébana, J., Soto, M. J. and Piédrola, G., High presence of extended-spectrum beta-lactamases and resistance to quinolones in clinical isolates of Escherichia coli. Microbiol. Res., 2007, 162(4), 347–354.
  • Erdeljić, V., The impact of antimicrobial consumption on the selection of extended-spectrum beta-lactamases producing (ESBL, AmpC) strains and on patients outcomes. Doctoral dissertation, University of Zagreb, Medical School, Zagreb, Croatia, 2012.
  • Kaftandzhieva, A., Kotevska, V., Jankoska, G., Kjurcik-Trajkovska, B., Cekovska, Ž. and Petrovska, M., Extended-spectrum betalactamaseproducing E. coli and Klebsiella pneumoniae in children at University Pediatric Clinic in Skopje. Macedonian J. Med. Sci., 2009, 2(1), 36–41.
  • Bedenic, B. et al., Antimicrobial susceptibility and beta-lactamase production of selected Gram-negative bacilli from two Croatian hospitals: MYSTIC study results. J. Chemother., 2010, 22, 147– 152.
  • Jacoby, G. A. and Mediros, A. A., More extended-spectrum betalactamases. Antimicrob. Agents Chemother., 1991, 35, 1697–1704.
  • Ozgunes, I. et al., The prevalence of extended-spectrum betalactamaseproducing Escherichia coli and Klebsiella pneumoniae in clinical isolates and risk factors. Saudi Med. J., 2006, 27(5), 608–612.
  • Islam, M. B. et al., Frequency and antimicrobial sensitivity pattern of extended spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae isolated from urine at a tertiary care hospital. J. Shaheed Suhrawardy Med. Coll., 2012, 4(1), 22–25.
  • Nwakaeze, E. A., Anyim, C., Ngwu, N. and Nwankwo, C., Extendedspectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli from blood cultures of hospitalized patients in Abakaliki Metropolis. Am. J. Infect. Dis. Microbiol., 2013, 1(4), 75–78.
  • Uzunovic-Kamberovic, S., Saric, D. and Sestic, S., Communityacquired urinary tract infections by extended-spectrum betalactamaseproducing Enterobacteriaceae in Zenica-Doboj Canton, Bosnia and Herzegovina. Med. Glasnik, 2006, 3(2), 46–52.
  • Fantin, B. et al., Activity of sulbactam in combination with ceftriaxone in vitro and in experimental endocarditis caused by Escherichia coli producing SHV-2-like beta-lactamase. Antimicrob. Agents Chemother., 1990, 34(4), 581–586.
  • Empel, J. et al., Molecular survey of beta-lactamases conferring resistance to newer beta-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob. Agents Chemother., 2008, 52(7), 2449–2454.
  • Damjanova, I. et al., Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005 – the new MRSAs? J. Antimicrob. Chemother., 2008, 62(5), 978–985.
  • Markovska, R. et al., Extended-spectrum beta-lactamaseproducing Enterobacteriaceae in Bulgarian hospitals. Microb. Drug Resist., 2008, 14(2), 119–128.
  • Babu, V., Narasingam, A., Ragavan, R. M., Manoharan, S. K. and Paul, A., Multidrug resistant Escherichia coli and Klebsiella pneumoniae from the urinary tract infections with special reference to extended spectrum beta-lactamase (ESBL) production. Int. J. Biol. Pharm. Res., 2014, 5(1), 66–70.
  • Falagas, M. E., Polemis, M., Alexiou, V. G., Marini-Mastrogiannaki, A., Kremastinou, J. and Vatopoulos, A. C., Antimicrobial resistance of Escherichia coli urinary isolates from primary care patients in Greece. Med. Sci. Monit., 2008, 14(2), 75–79.
  • Garau, J., Other antimicrobials of interest in era of extended spectrum beta lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin. Microbiol. Infect., 2008, 14(1), 198–202.
  • Paterson, D. L., Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs). Clin. Microbiol. Infect., 2000, 6(9), 460–463.
  • George, E. A., Sankar, S., Jesudasan, M. V., Sudandiradoss, C. and Nandagopal, B., Incidence of extended spectrum beta lactamase producing Escherichia coli among patients, healthy individuals and in the environment. Indian J. Med. Microbiol., 2014, 32(2), 172–174.

Abstract Views: 369

PDF Views: 120




  • Prevalence of Extended Spectrum Beta-Lactamases among Enterobacteriaceae Isolated from Intrahospital Patients in Serbia

Abstract Views: 369  |  PDF Views: 120

Authors

Slavica S. Ciric
University of Pristina, Kopaonicka St. bb, 38219 Lesak, Serbia
Dragana I. Stanisic
Creative classroom SENSA-S, Sveti Sava St. 52, 11550 Lazarevac, Serbia
Bozidar N. Milosevic
University of Pristina, Kopaonicka St. bb, 38219 Lesak, Serbia
Zoran Z. Ilic
University of Pristina, Kopaonicka St. bb, 38219 Lesak, Serbia
Zvonko Lj. Spasic
University of Pristina, Kopaonicka St. bb, 38219 Lesak, Serbia

Abstract


The aim of this study was to determine the prevalence of extended spectrum beta-lactamases (ESBLs) production in hospital strains of Enterobacteriaceae isolated from various clinical specimens (urine, blood and wound swabs) from hospitalized patients at the Military Medical Academy, Belgrade, Serbia. During six months of study, a total of 1034 isolates of Enterobacteriaceae were tested for antimicrobial susceptibility and screened for ESBL production according to standard methods. The overall prevalence of ESBL production in the hospital isolates of Enterobacteriaceae was 57.4%. Among the isolates, minimum frequency of resistance was found for amikacin (25.2%), and maximum for ampicillin (84.5%). The strain resistant to imipenem could not be isolated. Resistance to the tested antibiotics was higher in ESBL producers than non-producers (P < 0.05). Among Escherichia coli isolates, the prevalence of ESBL production was less than 50% (33.9%). ESBLs were most often produced by isolates of Serratia spp. (85.2%) and Klebsiella spp. (81.8%). Blood specimens were the most common sources of ESBL-producing isolates (84.0%). These findings might help clinicians in deciding the appropriate empirical treatment for intrahospital patients and emphasize the increasing problem of antimicrobial resistance in Serbia.

Keywords


Antibiotic Resistance and Susceptibility, Enterobacteriaceae, Extended Spectrum Beta-Lactamases, Human Isolates.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi11%2F2071-2078