Open Access Open Access  Restricted Access Subscription Access

Density Functional Theory-Based Quantum Rationalization of Flavones From Oroxylum indicum, their Correlation with Redox Effect, Molecular Interaction Studies and Osmotic Hemolysis


Affiliations
1 CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India
2 Central Institute of Plastic Engineering and Technology, Lucknow 226 008, India
 

Four flavones (chrysin, baicalein, oroxylin A and hispidulin) characterized from ethanolic ischolar_main extract of Oroxylum indicum (a traditional dietary nutraceutical supplement), were compared with both experimental (radical scavenging action and osmotic fragility test on human erythrocytes) and theoretical (Density functional theory (DFT) (B3LYP/6-31G*) calculations and in silico docking with haemoglobin and albumin) for their redox properties. Raman spectra were examined specifically between 2900 and 3700 cm–1 and the corresponding peaks were identified for hydroxyl group stretching vibrations. Baicalein and hispidulin had the highest and lowest binding energy respectively for oxyhaemoglobin (oxyHb) and vice versa for deoxyhaemoglobin (deoxyHb), which was one of the major findings revealed in their superposed docked structures where the position of baicalein was not changed unlike hispidulin. On the whole, baicalein is the preeminent flavone as it revealed maximum activity in various antioxidant assays, protection against osmotic fragility and binding energy with oxyHb which can be reasoned out by its least HOMO–LUMO energy gap.

Keywords

Flavones, HOMO–LUMO, Oroxylum indium, Osmotic Fragility, Raman Spectra.
User
Notifications
Font Size

  • Dinda, B., SilSarma, I., Dinda, M. and Rudrapaul, P., Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. J. Ethnopharmacol., 2015, 161, 255–278.
  • Yadav, A. K., Manika, N., Bagchi, G. D. and Gupta, M. M., Simultaneous determination of flavonoids in Oroxylum indicum by RP-HPLC. Med. Chem. Res., 2012, 22(5), 2222–2227.
  • Das, B. K., Al-Amin, M. M., Russel, S. M., Kabir, S., Bhattacherjee, R. and Hannan, J. M. A., Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. Indian J. Pharm. Sci., 2014, 76(6), 571–575.
  • Tran, T. V. A. et al., Screening of Vietnamese medicinal plants for NF-kappaB signaling inhibitors: assessing the activity of flavonoids from the stem bark of Oroxylum indicum. J. Ethnopharmacol., 2015, 159, 36–42.
  • Ali, M., Chaudhary, A. and Ramachandram, R., New pterocarpans from Oroxylum indicum stem bark. Indian J. Chem. Sect. B, 1999, 38(8), 950–952.
  • Pinheiro, P. F. and Justino, G. C., Structural analysis of flavonoids and related compounds – a review of spectroscopic applications; INTECH Open Access Publisher, London, United Kingdom, 2012.
  • Corredor, C., Teslova, T., Cañamares, M. V., Chen, Z., Zhang, J., Lombardi, J. R. and Leona, M., Raman and surface-enhanced Raman spectra of chrysin, apigenin and luteolin. Vib. Spectrosci., 2009, 49(2), 190–195.
  • Fuentes, R. G., Arai, M. A., Sadhu, S. K., Ahmed, F. and Ishibashi, M., Phenolic compounds from the bark of Oroxylum indicum activate the Ngn2 promoter. J. Nat. Med., 2015, 69(4), 589–594.
  • Medina, J. H., Paladini, A. C., Wolfman, C., Levi de Stein, M., Calvo, D., Diaz, L. E. and Pena, C., Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol., 1990, 40(10), 2227–2231.
  • Kasala, E. R. et al., Chemopreventive effect of chrysin, a dietary flavone against benzo(a)pyrene induced lung carcinogenesis in swiss albino mice. Pharmacol. Rep., 2016, 68(2), 310–318.
  • Fu, B., Xue, J., Li, Z., Shi, X., Jiang, B.-H. and Fang, J., Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1-alpha stability and inhibiting its protein synthesis. Mol. Cancer Ther., 2007, 6(1), 220–226.
  • Zarzecki, M. S., Araujo, S. M., Bortolotto, V. C., de Paula, M. T., Jesse, C. R. and Prigol, M., Hypolipidemic action of chrysin on triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol. Rep., 2014, 1, 200–208.
  • Kim, H. J. et al., Baicalein induces caspase-dependent apoptosis associated with the generation of ROS and the activation of AMPK in human lung carcinoma A549 cells. Drug Dev. Res., 2016, 77(2), 73–86.
  • Chou, D.-S., Lee, J.-J., Hsiao, G., Hsieh, C.-Y., Tsai, Y.-J., Chen, T.-F. and Sheu, J.-R., Baicalein induction of hydroxyl radical formation via 12-lipoxygenase in human platelets: an ESR study. J. Agric. Food Chem., 2007, 55(3), 649–655.
  • Choi, E.-O. et al., Baicalein protects C6 glial cells against hydrogen peroxide-induced oxidative stress and apoptosis through regulation of the Nrf2 signaling pathway. Int. J. Mol. Med., 2016, 37(3), 798–806.
  • Yoon, S. Y. et al., Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro. Arch. Pharm. Res., 2013, 36(1), 134–140.
  • Liu, X. et al., The Ameliorating effects of 5,7-dihydroxy-6methoxy-2(4-phenoxyphenyl)-4H-chromene-4-one, an oroxylin a derivative, against memory impairment and sensorimotor gating deficit in mice. Arch. Pharm. Res., 2013, 36(7), 854–863.
  • Kim, D. H. et al., Oroxylin A enhances memory consolidation through the brain-derived neurotrophic factor in mice. Brain Res. Bull., 2014, 108, 67–73.
  • Chen, Y.-C., Yang, L.-L. and Lee, T. J. F., Oroxylin a inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem. Pharmacol., 2000, 59(11), 1445–1457.
  • Atif, M. et al., Pharmacological assessment of hispidulin – a natural bioactive flavone. Acta Pol. Pharm., 2015, 72(5), 829–842.
  • Mishra, S. L., Sinhamahapatra, P. K., Nayak, A., Das, R. and Sannigrahi, S., In vitro antioxidant potential of different parts of Oroxylum indicum: a comparative study. Indian J. Pharm. Sci., 2010, 72(2), 267–269.
  • Ahmed, A., Singh, D. K., Fatima, K., Tandon, S. and Luqman, S., New constituents from the ischolar_mains of Oenothera biennis and their free radical scavenging and ferric reducing activity. Ind. Crops Prod., 2014, 58, 125–132.
  • Luqman, S., Prabu, K. V., Pal, A., Saikia, D., Darokar, M. P. and Khanuja, S. P. S., Antibiotic-induced alterations in the osmotic resistance of erythrocytes is modulated by beta-carotene and L-ascorbic acid. Nat. Prod. Commun., 2006, 1(6), 481–486.
  • Stephens, P. J., Devlin, F. J., Cheeseman, J. R., Frisch, M. J. and Rosini, C., Determination of absolute configuration using optical rotation calculated using density functional theory. Org. Lett., 2002, 4(26), 4595–4598.
  • Becke, A. D., Density-functional exchange–energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38(6), 3098.
  • Lee, C., Yang, W. and Parr, R. G., Development of the ColleSalvetti correlation–energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2), 785.
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R., Open Babel: an open chemical toolbox. J. Cheminform., 2011, 3, 33.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. and Hutchison, G. R., Avogadro: an advanced semantic chemical editor, visualization and analysis platform. J. Cheminform., 2012, 4(1), 17.
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639–1662.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E., UCSF chimera – a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605–1612.
  • Wallace, A. C., Laskowski, R. A. and Thornton, J. M., LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127–134.
  • Yadava, U., Singh, M. and Roychoudhury, M., Pyrazolo [3,4-d] pyrimidines as inhibitor of anti-coagulation and inflammation activities of phospholipase A 2: insight from molecular docking studies. J. Biol. Phys., 2013, 39(3), 419–438.
  • Blazovics, A. et al., In vitro analysis of the properties of Beiqishen Tea. Nutrition, 2003, 19(10), 869–875.
  • Prior, R. L., Wu, X. and Schaich, K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric Food Chem., 2005, 53(10), 4290– 4302.
  • Meamarbashi, A. and Rajabi, A., Erythrocyte osmotic fragility test revealed protective effects of supplementation with saffron and cinnamon on the red blood cell membrane. Asian J. Exp. Biol. Sci., 2013, 4, 322–326.
  • Walski, T., Chludzińska, L., Komorowska, M. and Witkiewicz, W., Individual osmotic fragility distribution: a new parameter for determination of the osmotic properties of human red blood cells. Biomed. Res. Int., 2014, 2014, article ID 162102, 6 pages.
  • Fiorani, M., De Sanctis, R., De Bellis, R. and Dachà, M., Intracellular flavonoids as electron donors for extracellular ferricyanide reduction in human erythrocytes. Free Radical Biol. Med., 2002, 32(1), 64–72.
  • Dai, F., Miao, Q., Zhou, B., Yang, L. and Liu, Z.-L., Protective effects of flavonols and their glycosides against free radicalinduced oxidative hemolysis of red blood cells. Life Sci., 2006, 78(21), 2488–2493.
  • Bilto, Y. Y. and Abdalla, S. S., Effects of selected flavonoids on deformability, osmotic fragility and aggregation of human erythrocytes. Clin. Hemorheol. Microcirc., 1998, 18(2 and 3), 165–173.
  • Zbidah, M., Lupescu, A., Jilani, K., Fajol, A., Michael, D., Qadri, S. M. and Lang, F., Apigenin-induced suicidal erythrocyte death. J. Agric. Food Chem., 2011, 60(1), 533–538.
  • Garnier, M., Perret, G., Pilardeau, P., Vaysse, J., Rolland, Y., Uzzan, B. and Vassy, R., Effect of diosmin upon red blood cell deformability and osmotic fragility. Relationship with lipid content. Methods Find. Exp. Clin. Pharmacol., 1988, 10(4), 259–262.
  • Karelson, M., Lobanov, V. S. and Katritzky, A. R., Quantumchemical descriptors in QSAR/QSPR studies. Chem. Rev., 1996, 96(3), 1027–1044.
  • Mendoza-Wilson, A. M. and Glossman-Mitnik, D., Theoretical study of the molecular properties and chemical reactivity of (+)catechin and (–)-epicatechin related to their antioxidant ability. J. Mol. Struct. THEOCHEM., 2006, 761(1), 97–106.
  • Parr, R. G., Szentpaly, L. V. and Liu, S., Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922–1924.
  • Liu, S., Dynamic behavior of chemical reactivity indices in density functional theory: a Bohn–Oppenheimer quantum molecular dynamics study. J. Chem. Sci., 2005, 117(5), 477–483.
  • Roy, D. R., Parthasarathi, R., Maiti, B., Subramanian, V. and Chattaraj, P. K., Electrophilicity as a possible descriptor for toxicity prediction. Bioorg. Med. Chem., 2005, 13(10), 3405– 3412.
  • Parthasarathi, R., Padmanabhan, J., Sarkar, U., Maiti, B., Subramanian, V. and Chattaraj, P. K., Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: a DFT approach. Internet Electron. J. Mol. Des., 2003, 2(12), 798–813.
  • Ormazábal-Toledo, R., Campodónico, P. R. and Contreras, R., Are electrophilicity and electrofugality related concepts? A density functional theory study. Org. Lett., 2011, 13(4), 822–824.
  • Jurasekova, Z., Domingo, C., Garcia-Ramos, J. V. and SánchezCortés, S., Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Phys. Chem. Chem. Phys., 2014, 16(25), 12802–12811.
  • Teslova, T. et al., Raman and surface-enhanced Raman spectra of flavone and several hydroxy derivatives. J. Raman Spectrosc., 2007, 38(7), 802–818.
  • Cañamares, M. V., Lombardi, J. R. and Leona, M., Raman and surface enhanced Raman spectra of 7-hydroxyflavone and 3′,4′dihydroxyflavone. e-PS, 2009, 6, 81–88.
  • Abraham, J. P., Sajan, D., Mathew, J., Hubert Joe, I., George, V. and Jayakumar, V. S., Structural conformations and electronic interactions of the natural product, oroxylin: a vibrational spectroscopic study. J. Raman Spectrosc., 2008, 39(12), 1821–1831.
  • Raman, C. V., A new radiation. Indian J. Phys., 1928, 2, 387–398.
  • Zhivkova, D. Z., Studies on drug–human serum albumin binding: the current state of the matter. Curr. Pharm. Des., 2015, 21(14), 1817–1830.
  • Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S. and Tajmir-Riahi, H. A., Antioxidant flavonoids bind human serum albumin. J. Mol. Struct., 2006, 798(1–3), 69–74.
  • Colmenarejo, G., In silico prediction of drug-binding strengths to human serum albumin. Med. Res. Rev., 2003, 23(3), 275–301.
  • Rovel, A., Streiff, F. and Vigneron, C., In vitro influence of albumin, gammaglobulin and fibrinogen on the sedimentation rate and the rheological behaviour of the red cell (author’s transl). Ann. Biol. Clin. (Paris), 1979, 37(4), 201–205.
  • Reinhart, W. H. and Nagy, C., Albumin affects erythrocyte aggregation and sedimentation. Eur. J. Med. Chem., 1995, 25(7), 523– 528.
  • Barreca, D., Laganà, G., Toscano, G., Calandra, P., Kiselev, M. A., Lombardo, D. and Bellocco, E., The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries. Biochim. Biophys. Acta – Gen. Subj., 2016, 1861 (1 pt B): 3531– 3539.
  • Fu, L. et al., Mechanism evaluation of the interactions between flavonoids and bovine serum albumin based on multi-spectroscopy, molecular docking and Q-TOF HR-MS analyses. Food Chem., 2016, 203, 150–157.
  • Wang, J., Wang, Q., Wu, D., Yan, J., Wu, Y. and Li, H., Comparative studies on the interactions of baicalein and Al(III)-baicalein complex with human serum albumin. Luminescence, 2016, 31(1), 54–62.
  • Sugio, S., Kashima, A., Mochizuki, S., Noda, M. and Kobayashi, K., Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng., 1999, 12(6), 439–446.
  • Asgary, S., Naderi, G., Sarrafzadegan, N., Ghassemi, N., Boshtam, M., Rafie, M. and Arefian, A., Anti-oxidant effect of flavonoids on haemoglobin glycosylation. Pharm. Acta Helv., 1999, 73(5), 223–226.
  • Sengupta, B., Banerjee, A. and Sengupta, P. K., Investigations on the binding and antioxidant properties of the plant flavonoid fisetin in model biomembranes. FEBS Lett., 2004, 570(1–3), 77–81.

Abstract Views: 472

PDF Views: 149




  • Density Functional Theory-Based Quantum Rationalization of Flavones From Oroxylum indicum, their Correlation with Redox Effect, Molecular Interaction Studies and Osmotic Hemolysis

Abstract Views: 472  |  PDF Views: 149

Authors

Nusrat Masood
CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India
Akhilesh Kumar Yadav
CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India
Naresh Kumar
Central Institute of Plastic Engineering and Technology, Lucknow 226 008, India
Madan Mohan Gupta
CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India
Suaib Luqman
CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India

Abstract


Four flavones (chrysin, baicalein, oroxylin A and hispidulin) characterized from ethanolic ischolar_main extract of Oroxylum indicum (a traditional dietary nutraceutical supplement), were compared with both experimental (radical scavenging action and osmotic fragility test on human erythrocytes) and theoretical (Density functional theory (DFT) (B3LYP/6-31G*) calculations and in silico docking with haemoglobin and albumin) for their redox properties. Raman spectra were examined specifically between 2900 and 3700 cm–1 and the corresponding peaks were identified for hydroxyl group stretching vibrations. Baicalein and hispidulin had the highest and lowest binding energy respectively for oxyhaemoglobin (oxyHb) and vice versa for deoxyhaemoglobin (deoxyHb), which was one of the major findings revealed in their superposed docked structures where the position of baicalein was not changed unlike hispidulin. On the whole, baicalein is the preeminent flavone as it revealed maximum activity in various antioxidant assays, protection against osmotic fragility and binding energy with oxyHb which can be reasoned out by its least HOMO–LUMO energy gap.

Keywords


Flavones, HOMO–LUMO, Oroxylum indium, Osmotic Fragility, Raman Spectra.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi11%2F2085-2094