Open Access Open Access  Restricted Access Subscription Access

Enumeration of Total Virioplankton and Isolation of Specific Cyanophages from Selected Aquatic Ecosystems in Goa, India


Affiliations
1 Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403 206, India
2 CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004,, India
 

Viruses are known to be highly abundant and, therefore, ecologically significant entities of all aquatic ecosystems. However, very few studies from marine and freshwater ecosystems in India have dealt with enumeration, isolation or characterization of their virus (virioplankton) populations. In the present study, we have estimated total virioplankton populations from several kinds of aquatic niches, viz. rice fields, lakes and estuaries, using flow cytometry. Rice field floodwaters displayed the highest virioplankton count of 1.21 × 107 particles per ml. As cyanophages form the second most abundant class of virioplankton (after bacteriophages), we also isolated four cyanophages from the same aquatic niches.

Keywords

Aquatic Ecosystem, Cyanophage, Flow Cytometry, Virus Enumeration.
User
Notifications
Font Size

  • Wommack, K. E. and Colwell, R. R., Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev., 2000, 64, 69– 114.
  • Suttle, C. A., Chan, A. M. and Cottrell, M. T., Infection of phytoplankton by viruses and reduction of primary productivity. Nature, 1990, 347, 467–469.
  • Hewson, I., O’Neil, J. M., Heil, C. A., Bratbak, G. and Dennison, W. C., Effects of concentrated viral communities on photosynthesis and community composition of co-occurring benthic microalgae and phytoplankton. Aquat. Microb. Ecol., 2001, 25, 1–10.
  • Bratbak, G., Heldal, M., Norland, S. and Thingstad, T. F., Viruses as partners in spring bloom microbial trophodynamics. Appl. Environ. Microbiol., 1990, 56, 1400–1405.
  • Suzuki, K., Kuwata, A., Yoshie, N., Shibata, A., Kawanobe, K. and Saito, H., Population dynamics of phytoplankton, heterotrophic bacteria, and viruses during the spring bloom in the western subarctic Pacific. Deep Sea Res. Part I, 2011, 58, 575–589.
  • Safferman, R. S. and Morris, M. E., Algal virus: isolation. Science, 1963, 140, 679–680.
  • Suttle, C. A. and Chan, A. M., Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar. Ecol. Prog. Ser., 1993, 92, 99–99.
  • Marston, M. F. and Sallee, J. L., Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island’s coastal waters. Appl. Environ. Microbiol., 2003, 69, 4639–4647.
  • Chénard, C., Chan, A. M., Vincent, W. F. and Suttle, C. A., Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. ISME J., 2015, 9, 2046–2058.
  • Sullivan, M. B., Waterbury, J. B. and Chisholm, S. W., Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 2003, 424, 1047–1051.
  • Yoshida, T., Takashima, Y., Tomaru, Y., Shirai, Y., Takao, Y., Hiroishi, S. and Nagasaki, K., Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol., 2006, 72, 1239–1247.
  • Ou, T., Li, S., Liao, X. and Zhang, Q., Cultivation and characterization of the MaMV-DC cyanophage that infects bloom-forming cyanobacterium Microcystis aeruginosa. Virol. Sin., 2013, 28, 266–271.
  • Jenkins, C. A. and Hayes, P. K., Diversity of cyanophages infecting the heterocystous filamentous cyanobacterium Nodularia isolated from the brackish Baltic Sea. J. Mar. Biol. Assoc. UK, 2006, 86, 529–536.
  • Zhou, Y., Lin, J., Li, N., Hu, Z. and Deng, F., Characterization and genomic analysis of a plaque purified strain of cyanophage PP. Virol. Sin., 2013, 28, 272–279.
  • Watkins, S. C., Smith, J. R., Hayes, P. K. and Watts, J. E., Characterisation of host growth after infection with a broad-range freshwater cyanopodophage. PLoS ONE, 2014, 9, e87339.
  • Sekar, A. and Kandasamy, K., Bacterial viruses in marine environment and their ecological role and bioprospecting potential: a review. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2, 151–163.
  • Parvathi, A., Radhakrishnan, S., Sajila, M. P. and Jacob, B., Study of changes in bacterial and viral abundance in formaldehyde-fixed water samples by epifluorescence microscopy. Environ. Monit. Assess., 2011, 177, 227–231.
  • Mitbavkar, S., Rajaneesh, K. M. and Sathish Kumar, P., Flow cytometric detection of viruses in the Zuari estuary, Goa. Curr. Sci., 2011, 101, 1282–1283.
  • Brussaard, C. P., Payet, J. P., Winter, C. and Weinbauer, M. G., Quantification of aquatic viruses by flow cytometry. In Manual of Aquatic Viral Ecology, American Society of Limnology and Oceanography, 2010, vol. 10, pp. 102–109.
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. Y., Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 1979, 111, 1–61.
  • Nagasaki, K. and Bratbak, G., Isolation of viruses infecting photosynthetic and non-photosynthetic protists. In Manual of Aquatic Viral Ecology, American Society of Limnology and Oceanography, 2010, vol. 10, pp. 92–101.
  • Bubeck, J. A. and Pfitzner, A. J., Isolation and characterization of a new type of chlorovirus that infects an endosymbiotic Chlorella strain of the heliozoon Acanthocystis turfacea. J. Gen. Virol., 2005, 86, 2871–2877.
  • Nakayama, N., Okumura, M., Inoue, K., Asakawa, S. and Kimura, M., Seasonal variations in the abundance of virus-like particles and bacteria in the floodwater of a Japanese paddy field. J. Soil Sci. Plant Nutr., 2007, 53, 420–429.
  • Kimura, M., Wang, G., Nakayama, N. and Asakawa, S., Ecology of viruses in rice fields. In Proceedings of the 19th World Congress of Soil Science, Solutions for a Changing World, Brisbane, Australia, 2010, pp. 9–11.
  • Sahrawat, K. L., Organic matter accumulation in submerged soils. Adv. Agron., 2003, 81, 169–201.
  • Watanabe, I. and Furusaka, C., Microbial ecology of flooded rice soils. In Advances in Microbial Ecology, Springer, USA, 1980, pp. 125–168.
  • Roger, P. A., Biology and Management of the Floodwater Ecosystem in Rice Fields, International Rice Research Institute, Manila, Philippines, 1996.
  • Bettarel, Y., Bouvy, M., Dumont, C. and Sime-Ngando, T., Virusbacterium interactions in water and sediment of West African inland aquatic systems. Appl. Environ. Microbiol., 2006, 72, 5274–5282.
  • Filippini, M., Buesing, N. and Gessner, M. O., Temporal dynamics of freshwater bacterio- and virioplankton along a littoral–pelagic gradient. Freshwater Biol., 2008, 53, 1114–1125.
  • Danovaro, R., Corinaldesi, C., Filippini, M., Fischer, U. R., Gessner, M. O., Jacquet, S. and Velimirov, B., Viriobenthos in freshwater and marine sediments: a review. Freshwater Biol., 2008, 53, 1186–1213.
  • Steenhauer, L. M., Freshwater viruses: from ecosystem dynamics to the cyanobacterial cell, Doctoral dissertation, Griffith University, Australia, 2013.
  • Cochlan, W. P., Wikner, J., Steward, G. F., Smith, D. C. and Azam, F., Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Mar. Ecol. Prog. Ser., 1993, 92, 77–87.
  • Weinbauer, M. G., Fuks, D., Puskaric, S. and Peduzzi, P., Diel, seasonal, and depth-related variability of viruses and dissolved DNA in the Northern Adriatic Sea. Microb. Ecol., 1995, 30, 25–41.
  • Paul, J. H., Rose, J. B., Jiang, S. C., London, P., Xhou, X. and Kellogg, C., Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii. Appl. Environ. Microbiol., 1997, 63, 133–138.
  • Marie, D., Brussaard, C. P., Thyrhaug, R., Bratbak, G. and Vaulot, D., Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol., 1999, 65, 45–52.
  • Li, W. K. W. and Dickie, P. M., Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry Part A, 2001, 44, 236–246.
  • Duhamel, S., Domaizon-Pialat, I., Personnic, S. and Jacquet, S., Assessing the microbial community dynamics and the role of bacteriophages in bacterial mortality in Lake Geneva. J. Water Sci., 2006, 19, 115–126.
  • Castberg, T., Larsen, A., Sandaa, R. A., Brussaard, C. P. D., Egge, J. K., Heldal, M. and Bratbak, G., Microbial population dynamics and diversity during a bloom of the marine Ooccolithophorid Emiliania huxleyi (Haptophyta). Mar. Ecol. Prog. Ser., 2001, 221, 39–46.
  • Personic, S., Domaizon, I., Sime-Ngando, T. and Jacquet, S., Seasonal variations of microbial abundances and virus-versus flagellateinduced mortality of picoplankton in three peri-alpine lakes. J. Plankton Res., 2009, 31, 1161–1177.
  • Wilson, W. H., Joint, I. R., Carr, N. G. and Mann, N. H., Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803. Appl. Environ. Microbiol., 1993, 59, 3736–3743.
  • Zhang, Y., Xu, M., Zhao, Y. and Cheng, K., The first isolation of a cyanophage – Synechococcus system from the East China Sea. Virol. Sin., 2013, 28, 260–265.
  • Wang, K. and Chen, F., Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol., 2008, 10, 300–312.
  • Dillon, A. and Parry, J. D., Characterization of temperate cyanophages active against freshwater phycocyanin-rich Synechococcus species. Freshwater Biol., 2008, 53, 1253–1261.
  • Dreher, T. W., Brown, N., Bozarth, C. S., Schwartz, A. D., Riscoe, E., Thrash, C. and Maier, C. S., A freshwater cyanophage whose genome indicates close relationships to photosynthetic marine cyanomyophages. Environ. Microbiol., 2011, 13, 1858–1874.

Abstract Views: 357

PDF Views: 127




  • Enumeration of Total Virioplankton and Isolation of Specific Cyanophages from Selected Aquatic Ecosystems in Goa, India

Abstract Views: 357  |  PDF Views: 127

Authors

Judith Miriam Noronha
Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403 206, India
Amara Begum Mulla
CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004,, India
Manguesh U. Gauns
CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004,, India
Sanjeev C. Ghadi
Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403 206, India

Abstract


Viruses are known to be highly abundant and, therefore, ecologically significant entities of all aquatic ecosystems. However, very few studies from marine and freshwater ecosystems in India have dealt with enumeration, isolation or characterization of their virus (virioplankton) populations. In the present study, we have estimated total virioplankton populations from several kinds of aquatic niches, viz. rice fields, lakes and estuaries, using flow cytometry. Rice field floodwaters displayed the highest virioplankton count of 1.21 × 107 particles per ml. As cyanophages form the second most abundant class of virioplankton (after bacteriophages), we also isolated four cyanophages from the same aquatic niches.

Keywords


Aquatic Ecosystem, Cyanophage, Flow Cytometry, Virus Enumeration.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi11%2F2147-2150