Open Access Open Access  Restricted Access Subscription Access

Synthetic Modulation Including Structure Establishment, Antiproliferative Activity of Some p-Aryl Substituted (Z)-2-Cyanoethylideneacetohydrazides, and their Structure Activity Relationship


Affiliations
1 University Institute of Pharmacy, Chhatrapati Shahu ji Maharaj (CSJM) University, Kalyanpur, Kanpur 208 024, India
2 Department of Zoology, Lucknow University, Lucknow 226 007, India
 

A series of p-substituted aryl-2-cyanoethylideneacetohydrazides derivatives (2a-j) were successfully synthesized in the laboratory (yield 60–80%). The synthesized compounds were screened for their antiproliferative activity against MCF-7 (estrogen dependent human breast cancer cell line), SaOS-2 (osteosarcoma cell line), and K562 (myeloid leukemia cell line) by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) reduction assay. They showed moderate to mild antiproliferative activity, (2j) being the most potent in the series with an IC50 55, 64 and 35 μM against MCF-7, SaOS-2 and K562 cell lines, depict p-nitro as a better antiproliferative substituent comparatively. We have also tested the hypothesis – ‘Electron withdrawing phenomenon affects antiproliferative activity’.

Keywords

Cancer, Cyanoacetohydrazide, Electron Withdrawing Ring Substituent, MTT Assay.
User
Notifications
Font Size

  • http://www.who.int/cancer
  • Filippova, M. et al., The small splice variant of HPV1 reduces tumor formation in cervical carcinoma xenografts, Virology, 2014, 450, 153–164.
  • Murray, R. K., Granner, D. K., Mayes, P. A. and Rhodwell, V. W., Cancer, Cancer genes, and Growth Factor, Harper’s Biochemistry; Appleton and Lange; 1996, 24th edn.
  • Park, J. H., El-Gamal, M. I., Lee, Y. S. and Oh, C. H., New imidazo[ 2,1-b]thiazole derivatives: synthesis, in vitro anticancer evaluation, and in silico studies. Eur. J. Med. Chem., 2011, 46, 5769– 5777.
  • Banimustafa, M., Kheirollahi, A., Safavi, M., Ardestani, S. K., Aryapour, H., Foroumadi, A. and Emami, S., Synthesis and biological evaluation of 3-(trimethoxyphenyl)-2(3H)-thiazole thiones as combretastatin analogs. Eur. J. Med. Chem., 2013, 70, 692–702.
  • Chavva, K. et al., Synthesis and biological evaluation of novel alkyl amide functionalized trifluoromethyl substituted pyrazolo[3,4b]pyridine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2013, 23, 5893–5895.
  • Liu, H. et al., Synthesis, preliminary structure – activity relationships, and in vitro biological evaluation of 6-aryl-3-aminothieno[ 2,3-b]pyridine derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2013, 23, 2349–2352.
  • Pandey, J., Pal, R., Dwivedi, A. and Hajela, K., Synthesis of some new diaryl and triaryl hydrazone derivatives as possible estrogen receptor modulators. Arzneimittelforschung, 2002, 52, 39–44.
  • Abadi, A. H., Eissa, A. A. H. and Hassan, G. S., Synthesis of novel 1,3,4-trisubstituted pyrazole derivatives and their evaluation as antitumor and antiangiogenic agents. Chem. Pharm. Bull., 2003, 51, 838–844.
  • Terzioğlu, N. and Gürsoy, A., Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1b]-[1,3,4]thiadiazole-5-carbohydrazide. Eur. J. Med. Chem., 2003, 38, 781–786.
  • Gürsoy, A. and Karali, N., Synthesis and primary cytotoxicity evaluation of 3-[[(3-phenyl-4(3H)-quinazolinone-2-yl)mercaptoacetyl] hydrazono]-1H-2-indolinones. Eur. J. Med. Chem., 2003, 38, 633–643.
  • Savini, L., Chiasserini, L., Travagli, V., Pellerano, C., Novellino, E., Cosentino, S. and Pisano, M. B., New α-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity. Eur. J. Med. Chem.. 2004, 39, 113–122.
  • Zhang, H., Drewe, J., Tseng, B., Kasibhatla, S. and Cai, S. X., Discovery and SAR of indole-2-carboxylic acid benzylidenehydrazides as a new series of potent apoptosis inducers using a cellbased HTS assay. Bioorg. Med. Chem., 2004, 12, 3649–3655.
  • Demirbas, N., Karaoglu, S., Demirbas, A. and Sancak, K., Synthesis and antimicrobial activities of some new 1-(5-phenylamino[1,3,4]thiadiazol-2-yl)methyl-5-oxo-[1,2,4]triazole and 1-(4phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo-[1,2,4]triazole derivatives. Eur. J. Med. Chem., 2004, 39, 793–804.
  • Cocco, M. T., Congiu, C., Lilliu, V. and Onnis, V., Synthesis and in vitro antitumoral activity of new hydrazinopyrimidine5-carbonitrile derivatives. Bioorg. Med. Chem., 2005, 14, 366– 372.
  • Gürsoy, E. and Güzeldemirci-Ulusoy, N., Synthesis and primary cytotoxicity evaluation of new imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2007, 42, 320–326.
  • Rahman, V. M., Mukhtar, S., Ansari, W. H. and Lemiere, G., Synthesis, stereochemistry and biological activity of some novel long alkyl chain substituted thiazolidin-4-ones and thiazan-4-one from 10-undecenoic acid hydrazide. Eur. J. Med. Chem., 2005, 40, 173– 184.
  • Yapia, R., La Mara, M. P. and Massieu, G. H., Modifications of brain glutamate decarboxylase activity by pyridoxal phosphateglutamyl hydrazone. Biochem. Pharmacol., 1967, 16, 1211–1218.
  • Sava, G., Perissin, L., Lassiani, L. and Zabucchi, G., Antiinflammatory action of hydrosoluble dimethyl-triazenes on the carrageen induced edema in guinea pigs. Chem. Biol. Interact., 1985, 53, 37–43.
  • Xia, Y. L., Chuan-Dong, F., Zhao, B. X., Zhao, J., Shin, D. S. and Miaom, J. Y., Synthesis and structure activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide hydrazone derivatives as potential agents A549 lung cancer cells. Eur. J. Med. Chem., 2008, 43, 2347–2353.
  • Mohareb, R. F., Fleita, D. H. and Sakka, O. K., Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivative with antitumor activity. Molecules, 2011, 16, 16–27.
  • Bondock, S., Tarhoni, A. E. and Fadda, A. A., Utility of cyanoacetic acid hydrazide in heterocyclic synthesis; ARKIVOC, 2006, ix, 113–156.
  • Chowrasia, D., Karthikeyan, C., Choure, L., Sahabjada, Gupta, G. and Arshad, M., Synthesis, characterization and anti-cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazoles. Arab. J. Chem., 2013 (in press).

Abstract Views: 354

PDF Views: 118




  • Synthetic Modulation Including Structure Establishment, Antiproliferative Activity of Some p-Aryl Substituted (Z)-2-Cyanoethylideneacetohydrazides, and their Structure Activity Relationship

Abstract Views: 354  |  PDF Views: 118

Authors

Deepak Chowrasia
University Institute of Pharmacy, Chhatrapati Shahu ji Maharaj (CSJM) University, Kalyanpur, Kanpur 208 024, India
Nisha Sharma
University Institute of Pharmacy, Chhatrapati Shahu ji Maharaj (CSJM) University, Kalyanpur, Kanpur 208 024, India
Ajay Kumar
University Institute of Pharmacy, Chhatrapati Shahu ji Maharaj (CSJM) University, Kalyanpur, Kanpur 208 024, India
Md Arshad
Department of Zoology, Lucknow University, Lucknow 226 007, India
Sahabjada Siddiqui
Department of Zoology, Lucknow University, Lucknow 226 007, India
Asif Jafri
Department of Zoology, Lucknow University, Lucknow 226 007, India
Juhi Rahis
Department of Zoology, Lucknow University, Lucknow 226 007, India

Abstract


A series of p-substituted aryl-2-cyanoethylideneacetohydrazides derivatives (2a-j) were successfully synthesized in the laboratory (yield 60–80%). The synthesized compounds were screened for their antiproliferative activity against MCF-7 (estrogen dependent human breast cancer cell line), SaOS-2 (osteosarcoma cell line), and K562 (myeloid leukemia cell line) by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) reduction assay. They showed moderate to mild antiproliferative activity, (2j) being the most potent in the series with an IC50 55, 64 and 35 μM against MCF-7, SaOS-2 and K562 cell lines, depict p-nitro as a better antiproliferative substituent comparatively. We have also tested the hypothesis – ‘Electron withdrawing phenomenon affects antiproliferative activity’.

Keywords


Cancer, Cyanoacetohydrazide, Electron Withdrawing Ring Substituent, MTT Assay.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi12%2F2287-2290