Open Access Open Access  Restricted Access Subscription Access

Sudarshan and Modern Quantum Optics


Affiliations
1 Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA, United States
 

No Abstract.

Keywords

No Keywords.
User
Notifications
Font Size

  • Sudarshan, E. C. G., Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett., 1963, 10, 277.
  • Misra, B. and Sudarshan, E. C. G., The Zenos paradox in quantum theory. J. Math. Phys., 1977, 18, 756.
  • Sudarshan, E. C. G., Mathews, P. M. and Rau, J., Stochastic dynamics of quantum-mechanical systems. Phys. Rev., 1961, 121, 920.
  • Gorini, V., Kossakowski, A. and Sudarshan, E. C. G., Completely positive dynamical semigroups of Nlevel systems. J. Math. Phys., 1976, 17, 821.
  • Duck, I. M., Stevenson, P. M. and Sudarshan, E. C. G., The sense in which a ‘weak measurement’ of a spin particle’s spin component yields a value 100. Phys. Rev. D, 1989, 40, 2112.
  • Sudarshan, E. C. G., Quantum dynamics in dual spaces. Phys. Rev. A, 1994, 50, 2006.
  • Chiu, C. B., Sudarshan, E. C. G. and Bhamathi, G., Cascade model: A solvable field theory. Phys. Rev. D, 1992, 46, 3508.
  • Bhamathi, G. and Sudarshan, E. C. G., Double resonances and Jordan block spectra. Int. J. Mod. Phys. B, 1996, 10, 1531.
  • Simon, R., Kimble, H. J. and Sudarshan, E. C. G., Evolving geometric phase and its dynamical manifestation as a frequency shift: an optical experiment. Phys. Rev. Lett., 1988, 61, 19.
  • Ritchie, N. W. M., Story, J. G. and Hulet, R. G., Realization of a measurement of a weak value. Phys. Rev. Lett., 1991, 66, 1107.
  • Viola, L. and Lloyd, S., Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 1998, 58, 2733.
  • Agarwal, G. S., Scully, M. O. and Walther, H., Inhibition of decoherence due to decay in a continuum. Phys. Rev. Lett., 2001, 86, 4271.
  • Khodjasteh, K. and Lidar, D. A., Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett., 2005, 95, 180501.
  • Du, J., Rong, X., Zhao, N., Wang, Y., Yang, J. and Liu, R. B., Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature, 2009, 461, 1265 EP.
  • Biercuk, M. J., Uys, H., VanDevender, A. P., Shiga, N., Itano, W. M. and Bollinger, J. J., Optimized dynamical decoupling in a model quantum memory. Nature, 2009, 458, 996 EP.
  • Cao, Y. et al., Direct counterfactual communication via quantum Zeno effect. Proc. Natl. Acad. Sci., 2017, 114, 4920.
  • Shi, Z., Mirhosseini, M., Margiewicz, J., Malik, M., Rivera, F., Zhu, Z. and Boyd, R. W., Scan-free direct measurement of an extremely high-dimensional photonic state. Optica, 2015, 2, 388.
  • Glauber, R. J., Coherent and incoherent states of the radiation field. Phys. Rev., 1963, 131, 2766 (see especially p. 2788).
  • Klauder, J. R. and Sudarshan, E. C. G., Fundamentals of Quantum Optics, Dover Publications, 2006, p. 192.
  • Glauber, R. J., Photon correlations. Phys. Rev. Lett., 1963, 10, 84.
  • Agarwal, G. S., Quantum Optics, Cambridge University Press, 2013.

Abstract Views: 425

PDF Views: 101




  • Sudarshan and Modern Quantum Optics

Abstract Views: 425  |  PDF Views: 101

Authors

G. S. Agarwal
Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA, United States

Abstract


No Abstract.

Keywords


No Keywords.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi2%2F205-206