Open Access Open Access  Restricted Access Subscription Access

Characterization of Different Forms of Chalcopyrite Disease through Fractal Analysis


Affiliations
1 Department of Geology, University of Delhi, Delhi 110 007, India
2 Department of Physics, SGTB Khalsa College, University of Delhi, Delhi 110 007, India
 

Complex shapes that form by natural processes are often difficult to explain using non-Euclidean geometry. Chalcopyrite disease (CD) formation, a replacement texture, demonstrates a nonlinear-fractal geometry. CD samples from three polymetallic deposits were chosen for fractal analysis. CD did not show a fractal value specific to mineralized deposits. However, fractal analysis showed consistent values for a similar form of CD, thus setting a quantitative relationship between varied forms of CD and their condition of formation. The mean fractal dimension calculated for each study area displayed a positive correlation with the peak metamorphic grade of the respective deposit. The statistical analysis (ANOVA) of fractal dimension data further delineated the differences among the three study areas.

Keywords

Box Counting Method, Chalcopyrite Disease, Fractal Dimension, Replacement Texture, Statistical Analysis.
User
Notifications
Font Size

  • Betekhtin, A. G., Genkin, A. D., Filimonova, A. A. and Shadlun, T. N., Structures and Textures of Ores, Gosgeoltekhisdat, Moscow, Russia, 1958, p. 435.
  • Grigoriev, I. F., Textures of mineral intergrowths in ores. Zap. Vses. Mineral. Ova., 1928, 57, 11–56.
  • Ramdohr, P., Beobachtungen an opaken Erzen. Arch. Lagerstaettenforsch, 1924, 34, 30.
  • Schneiderhöhn, H., Anleitung zur microscopischen Bestimmung und Untersuchung von Erzen und Aufbereitungsprodukten, besonderes im auffallenden Licht: Berlin, Selbstverlag Gesell. Deutsche Metallhiitten Bergleute, 1922, p. 292.
  • Nakano, N., On the microscopic intergrowths of chalcopyrite and zincblende. Jpn. Assoc. Mineral. Petrol. Econ. Geol. J., 1937, 18, 23–29.
  • Barton, P. B., Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Min. Geol., 1978, 28, 293–300.
  • Barton, P. B. and Bethke, P. M., Chalcopyrite disease in sphalerite: pathology and epidemiology. Am. Mineral., 1987, 76, 451– 467.
  • Sugaki, A., Kitakaze, A. and Kojima, S., Bulk compositions of intimate intergrowths of chalcopyrite and sphalerite and their genetic implications. Miner. Deposita, 1987, 22(1), 26–32.
  • Eldridge, C. S., Bourcier, W. L., Ohmoto, H. and Barnes, H. L., Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite. Econ. Geol., 1988, 83(5), 978–989.
  • Wiggins, L. B. and Craig, J. R., Reconnaissance of the Cu–Fe– Zn–S system; sphalerite phase relationships. Econ. Geol., 1980, 75(5), 742–751.
  • Mizuta, T., Interdiffusion rate of zinc and iron in natural sphalerite. Econ. Geol., 1988, 83, 1205–1220.
  • Kojima, S., A co-precipitation experiment on intimate association of sphalerite and chalcopyrite and its bearing on the genesis of Kuroko ores. Min. Geol., 1990, 40, 147–158.
  • Hutchinson, M. N. and Scott, S. D., Sphalerite geobarometry in the system Cu–Fe–Zn–S. Econ. Geol., 1981, 76, 143–155.
  • Kojima, S. and Sugaki, A., Phase relations in the Cu–Fe–Zn–S system between 500 and 300 under hydrothermal conditions. Econ. Geol., 1985, 80, 158–171.
  • Govindarao, B., Pruseth, K. L. and Mishra, B., Sulfide partial melting and chalcopyrite disease: an experimental study. Am. Mineral., 2018, 103(8), 1200–1207.
  • Pruseth, K. L., Mishra, B., Jehan, N. and Kumar, B., Evidence of sulfide melting and melt fractionation during amphibolite facies metamorphism of the Rajpura–Dariba polymetallic sulfide ores. Ore Geol. Rev., 2016, 72, 1213–1223.
  • Bente, K. and Doering, T., Solid state diffusion studies in sphalerite: an experimental verification of the ‘chalcopyrite disease’. Eur. J. Mineral., 1993, 53, 285–305.
  • Bente, K. and Doering, T., Experimental studies on the solid state diffusion of (Cu + In) in (ZnS) and on ‘disease’, DIS (diffusion induced segregations), in sphalerite and their geological application. J. Mineral. Petrol., 1995, 53, 285–305.
  • Mandelbrot, B. B., The Fractal Geometry of Nature (revised and enlarged edition), Freeman and Co, NY, USA, 1983, p. 495.
  • Lipowsky, R., Scaling properties of interfaces and membranes. In Random Fluctuations and Pattern Growth: Experiments and Models, Springer, The Netherlands, 1988, pp. 227–245.
  • Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. and Wrigh, D. F., Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In Computers in Geology – 25 years of Progress, Oxford University Press, NY, USA, 1993, pp. 13–32.
  • Ford, A. and Blenkinsop, T. G., Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia. Ore Geol. Rev., 2008, 33(3–4), 435–450.
  • Changjiang, L., Youlang, X. and Xuliang, J., Fractal Nature of Mineral Deposit, Geology of Zhejiang, 2, 1994.
  • Blenkinsop, T. G., Kruhl, J. H. and Kupková, M. (eds), Fractals and Dynamic Systems in Geoscience, Birkhäuser Verlag, Basel, Switzerland, 2000.
  • Gulbin, Y. L. and Evangulova, E. B., Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Math. Geol., 2003, 35(7), 819–833.
  • Huber, M. A., Dynamics of metamorphism processes by the fractal textures analysis of garnets, amphiboles and pyroxenes of Lapland Granulite Belt, Kola Peninsula. J. Biol. Earth Sci., 2012, 2(2), 50–55.
  • Nkono, C., Féménias, O., Lesne, A., Mercier, J. C., Ngounouno, F. Y. and Demaiffe, D., Relationship between the fractal dimension of orthopyroxene distribution and the temperature in mantle xenoliths. Geol. J., 2016, 51(5), 748–759.
  • Kueppers, U., Scheu, B., Spieler, O. and Dingwell, D. B., Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J. Volcanol. Geotherm. Res., 2006, 153, 125–135.
  • Bindeman, I. N., Fragmentation phenomena in populations of magmatic crystals. Am. Mineral., 2005, 90, 1801–1815.
  • Yu, C. and Liu, J., Fractal and multifractal analyses of sphalerite banding at the Zhaishang gold deposit, western Qinling, China. Eur. J. Mineral., 2015, 27, 511–520.
  • Fowler, A. D. and L’Heureux, I., Self-organized banded sphalerite and branching galena in the Pine Point ore deposit, Northwest Territories. Canadian Mineral., 1996, 34(6), 1211–1222.
  • Xia, F. et al., A characterization of porosity in sulfide ore minerals: a USANS/SANS study. Am. Mineral., 2014, 99, 2398–2404.
  • Heron, A. M., The geology of central Rajputana. Mem. Geol. Surv. India, 1953, 79, 389.
  • Deb, M., Genesis and metamorphism of two stratiform massive sulphide deposits at Ambaji and Deri in the Precambrian of western India. Econ. Geol., 1980, 75, 572–591.
  • Deb, M. and Sarkar, S. C., Proterozoic tectonic evolution and metallogenesis in the Aravalli–Delhi orogenic complex, northwestern India. Precambrian Res., 1990, 46, 115–137.
  • Raghunandan, K. R., Dhruva Rao, B. K. and Singhal, M. L., Exploration for copper, lead and zinc ores in India. Bull. Geol. Surv. India, Ser. A, 1981, 47, 16–18.
  • Tripathi, S., Geological characterisation of the carbonate-hosted polymetallic prospect at Imalia, Mahakoshal belt, Central India. Unpublished Ph D thesis, University of Delhi, India, 2008, p. 315.
  • Peternell, M. and Kruhl, H., Automation of pattern recognition and fractal-geometry-based pattern quantification, exemplified by mineral-phase distribution patterns in igneous rocks. Comput. Geosci., 2011, 35, 1415–1426.
  • Pruess, S. A., Some remarks on the numerical estimation of fractal dimension. In Fractals in the Earth Sciences (eds Barton, C. C. and La Pointe, P. R.), Plenum Press, NY, USA, 1995, pp. 65–76.
  • Deb, M., Polymetamorphism of ores in Precambrian stratiform massive sulfide Deposits at Ambaji–Deri, Western India. Miner. Deposita, 1979, 14, 21–31.
  • Tiwary, A., Deb, M. and Cook, N. J., Use of pyrite microfabric as a key to tectono-thermal evolution of massive sulphide deposits – an example from Deri, southern Rajasthan, India. Mineral. Mag., 1998, 62(2), 197–212.
  • Li, J. M., Lü, L., Lai, M. O. and Ralph, B., Image Based Fractal Description of Microstructures, 2003, Kluwer, p. 272.
  • Deb, M. and Bhattacharya, A. K., Geological setting and conditions of metamorphism of Rajpura–Dariba polymetallic ore deposit, Rajasthan, India. In Proceedings of the 5th IAGOD symposium, Scheweizerbart’sche Verlagsbuchhandlung, Sttutgart, Germany, 1980, pp. 679–697.
  • Pal, T., Ore deposit modeling in the Dariba–Rajpura–Bethumni belt, Rajasthan, in the light of a database on sediment-hosted Pb–Zn sulphide deposits in India, 2006, Unpublished Ph D thesis, p. 311.
  • Mishra, B. Evolution of the Rajpura–Dariba polymetallic sulphide deposit: constraints from sulphide–sulfosalt phase equilibria and fluid inclusion studies. In Crustal Evolution and Metallogeny in the Northwestern Indian Shield, Narosa Publication, New Delhi, 2000, pp. 347–370.
  • Mishra, B., Upadhyay, D. and Bernhardt, H.-J. Metamorphism of the host and associated rocks at the Rajpura–Dariba massive sulfide deposit, Northwestern India. J. Asian Earth Sci., 2006, 26(1), 21–37.
  • Bortnikov, N. S., Genkin, A. D., Dobrovol’skaya, M. G., Muravitskaya, G. N. and Filimonova, A. A., The nature of chalcopyrite inclusions in sphalerite: exsolution, coprecipitation, or ‘disease’? Econ. Geol., 1991, 86, 1070–1082.
  • Nagase, T. and Kojima, S., An SEM examination of the chalcopyrite disease texture and its genetic implications. Mineral. Mag., 1997, 61, 89–97.
  • Williams, V. A., Diffusion of some impurities in zinc sulphide single crystals. J. Mater. Sci., 1972, 7(7), 807–812.

Abstract Views: 309

PDF Views: 122




  • Characterization of Different Forms of Chalcopyrite Disease through Fractal Analysis

Abstract Views: 309  |  PDF Views: 122

Authors

Shubham Tripathi
Department of Geology, University of Delhi, Delhi 110 007, India
Sushil K. Singh
Department of Physics, SGTB Khalsa College, University of Delhi, Delhi 110 007, India

Abstract


Complex shapes that form by natural processes are often difficult to explain using non-Euclidean geometry. Chalcopyrite disease (CD) formation, a replacement texture, demonstrates a nonlinear-fractal geometry. CD samples from three polymetallic deposits were chosen for fractal analysis. CD did not show a fractal value specific to mineralized deposits. However, fractal analysis showed consistent values for a similar form of CD, thus setting a quantitative relationship between varied forms of CD and their condition of formation. The mean fractal dimension calculated for each study area displayed a positive correlation with the peak metamorphic grade of the respective deposit. The statistical analysis (ANOVA) of fractal dimension data further delineated the differences among the three study areas.

Keywords


Box Counting Method, Chalcopyrite Disease, Fractal Dimension, Replacement Texture, Statistical Analysis.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi3%2F460-469