Open Access
Subscription Access
SCATSAT-1 Wind Products for Tropical Cyclone Monitoring, Prediction and Surface Wind Structure Analysis
The present study discusses the application of near real-time ocean surface wind vectors retrieved from scatterometer instrument, on-board Indian polar satellite SCATSAT-1, for tropical cyclone (TC) analysis and prediction. The real-time tropical cyclogenesis prediction of cyclonic activities in the North Indian Ocean basin has been presented using SCATSAT-1 wind data. The study also demonstrates the utility of high-resolution surface wind products of the scatterometer in monitoring mesoscale-level features of TCs for centre determination, size estimation and analysis of asymmetric wind radii. Impact of SCATSAT-1 winds for TC prediction using numerical weather prediction model has also been discussed. The shortcomings of ocean surface wind observations from space-based scatterometers are addressed, in addition to the sensor requirements for future satellite missions.
Keywords
Cyclogenesis, Scatterometer, Tropical Cyclone, Wind Structure.
User
Font Size
Information
- Gray, W. M., Global view of the origin of tropical disturbances and storms. Mon. Weather Rev., 1968, 96(10), 669–700.
- Mohapatra, M., Mandal, G. S., Bandyopadhyay, B. K., Tyagi, A. and Mohanty, U. C., Classification of cyclone hazard prone districts of India. Nat. Hazards, 2012, 63, 1601–1620.
- Mohapatra, M., Bandyopadhyay, B. K. and Tyagi, A., Best track parameters of tropical cyclones over the North Indian Ocean: a review. Nat. Hazards, 2012, 63, 1285–1317.
- Chourasia, M., Asrit, R. G. and George, J. P., Impact of cyclone bogussing and regional assimilation on tropical cyclone track and intensity prediction. Mausam, 2013, 64, 135–148.
- Dube, S. K., Poulose, J. and Rao, A. D., Numerical simulation of storm surge associated with severe cyclonic storms in the Bay of Bengal during 2008–11. Mausam, 2013, 64(1), 193–202.
- Gohil, B. S., Sikhakolli, R. and Gangwar, R. K., Development of geophysicsl model functions for Oceansat-2 scatterometer. IEEE GRSL, 2013, 10(2), 377–380.
- Liu, W. T., Hu, H., Song, Y. T. and Tang, W., Improvement of scatterometer wind vectors – impact on hurricane and coastal studies. In Proceedings of WCRP/SCOR Workshop on Intercomparison and Validation of Ocean–Atmosphere Flux Fields. World Meteorological Organization – Publications WMO TD, 2001, 2001, pp. 197–200.
- Quilfen, Y., Chapron, B., Elfouhaily, T., Katsaros, K. and Tourna, J., Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res., 1998, 103, 7767–7786.
- Tang, W., Liu, W. T. and Stiles, B. W., Evaluation of highresolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Trans. Geosci. Remote Sensing, 2004, 42, 1762–1769.
- Lindsley, R. D., Blodgett, J. R. and Long, D. G., Analysis and validation of high-resolution wind from ASCAT. IEEE Trans. Geosci. Remote Sensing, 2016, 54, 5699–5711.
- Chelton, D. B., Freilich, M. H., Sienkiewicz, J. M. and Ahn, J. M. V., On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Bull. Am. Meteorol. Soc., 2006, 134, 2055–2071.
- Brennan, M. J., Hennon, C. C. and Knabb, R. D., The operational use of QuikSCAT Ocean surface vector winds at the national hurricane center. Weather Forecast., 2009, 24, 621–645.
- Stoffelen, A. and Cats, J. C., The impact of seasat-A scatterometer data on high-resolution analyses and forecasts: the development of the QEII storm. Mon. Weather Rev., 1991, 119, 2794–2802.
- Atlas, R., Hoffman, R. N., Leidner, S. M. and Sienkiewicz, J., The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Am. Meteorol. Soc., 2001, 82, 1965–1990.
- Isaksen, L. and Janssen, P. A., Impact of ERS scatterometer winds in ECMWF’s assimilation system. Q. J. R. Meteorol. Soc., 2004, 130, 1793–1814.
- Rambabu, G., QuikSCAT scatterometer wind data impact on tropical cyclone forecasts by a mesoscale model. Mausam, 2006, 57, 141.
- Singh, R., Kishtawal, C. M., Pal, P. K. and Joshi, P. C., Assimilation of the multisatellite data into the WRF model for track and intensity simulation of the Indian Ocean tropical cyclones. Meteorol. Atmosph. Phys., 2011, 111(3–4), 103–119.
- Jung, B. J., Kim, H. M., Auligne, T., Zhang, X., Zhang, X. and Huang, X. Y., Adjoint derived observation impact using WRF in the western North Pacific. Mon. Weather Rev., 2013, 141, 4080–4097.
- Prasad, S. V., Gupta, A. and Rajagopal, E. N., Impact of OSCAT surface wind data on T574L64 assimilation and forecasting system – a study involving tropical cyclone Thane. Curr. Sci., 2013, 104, 627–631.
- Greeshma, M. M., Srinivas, C. V., Naisu, C. V., Baskaran, R. and Venkatraman, B., Impact of local data assimilation on tropical cyclone predictions over the Bay of Bengal using the ARW model. Annu. Geophys., 2015, 33, 805–828.
- Dodla, V. B., Srinivas, D., Dasari, H. P. and Gubbala, C. S., Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances. Proc. SPIE: Remote Sensing Model. Atmos., Oceans Interact VI, 2016, 9882, 988213.
- Duan, B., Zhang, W., Yang, X., Dai, H. and Yu, Y., Assimilation of typhoon wind field retrieved from scatterometer and SAR based on the Huber norm quality control. Remote Sensing, 2017, 9, 987.
- Liu, W. T., Hu, H. and Yueh, S., Interplay between wind and rain observed in hurricane Floyd, Trans. AGU, 2000, 81, 253–253.
- Hsu, C. S. and Liu, W. T., Wind and pressure fields near tropical cyclone Oliver derived from scatterometer observations. J. Geophys. Res., 1996, 101, 17021–17027.
- Liu, K. S. and Chan, J. C., Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Weather Rev., 1999, 127(12), 2992–3001.
- Chan, K. T. and Chan, J. C., Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Weather Rev., 2012, 140(3), 811–824.
- Knaff, J. A., Longmore, S. P. and Molenar, D. A., An objective satellite-based tropical cyclone size climatology. J. Climate, 2014, 27, 455–476.
- Jaiswal, N., Ha, D. T. T. and Kishtawal, C. M., Estimation of size of tropical cyclones in the North Indian Ocean using Oceansat-2 scatterometer high-resolution wind products. Theor. Appl. Climatol., 2019, 136, 45–53.
- Klotz, B. W. and Jiang, H., Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database, Geophys. Res. Lett., 2016, 43, 10480–10488.
- Sharp, R. J., Bourassa, M. A. and O’Brien, J. J., Early detection of tropical cyclones using sea winds-derived vorticity. Bull. Am. Meteorol. Soc., 2002, 83, 879–889.
- Hite, M. M., Bourassa, M. M., Cunningham, P., O’Brien, J. J. and Reasor, P. D., Vorticiy based detection of tropical cyclogenesis. J. Appl. Meteorol. Climatol., 2007, 46, 1214–1229.
- Jaiswal, N. and Kishtawal, C. M., Prediction of tropical cyclogenesis using scatterometer data. IEEE Trans. Geosci. Remote Sensing, 2011, 49, 4904–4909.
- Jaiswal, N., Kishtawal, C. M. and Pal, P. K., Prediction of tropical cyclogenesis in North Indian Ocean using OSCAT data. Meteorol. Atmos. Phys., 2013, 119, 137–149.
- Mohapatra, M. and Sharma, M., Characteristics of surface wind structure of tropical cyclones over the North Indian Ocean. J. Earth Syst. Sci., 2015, 124, 1573–1598.
- Wilks, D. S., Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, San Diego, California, 1995, 465.
- Goyal, S., Mohapatra, M., Kumar, A., Dube, S. K., Rajendra, K. and Goswami, P., Validation of a satellite-based cyclogenesis technique over the North Indian Ocean. J. Earth Syst. Sci., 2016, 125, 1353–1363.
- Miller, A. and Anthes, R., Meteorology, Merril Publishing, Columbus, 1985.
- Chavas, D. R. and Emanuel, K. A., A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 2010, 37(18), L18816.
- Ahrens, C. D., Essentials of Meteorology, Wadsworth Publishing, Belmont, 1998, 2nd edn.
- Chan, J. C. and Yip, C. K., Interannual variations of tropical cyclone size over the western North Pacific. Geophys. Res. Lett., 2003, 30(24), 2267.
- DeMaria, M. et al., Improvements to the operational tropical cyclone wind speed probability model. Weather Forecast., 2013, 28, 586–602.
- Sampson, C. R., Wittmann, P. A. and Tolman, H. L., Consistent tropical cyclone wind and wave forecasts for the US Navy. Weather Forecast., 2010, 25, 1293–1306.
- Bender, M. A., Ginis, I., Tuleya, R., Thomas, B. and Marchok, T., The operational GFDL coupled hurricane–ocean prediction system and summary of its performance. Mon. Weather Rev., 2007, 135, 3965–3989.
- Singh, R., Kumar, P. and Pal, P. K., Assimilation of Oceansact-2 scatterometer derived surface winds in the weather research and forecasting model. IEEE Trans. Geosci. Remote Sensing, 2012, 50(4), 1015–1021.
- Kumar, P., Kishtawal, C. M. and Pal, P. K., Sensitivity analysis of high resolution Oceansat-2 scatterometer winds on Thane cyclone simulation. Int. J. Remote Sensing, 2014, 35(23), 7927–7940.
- Kumar, P. and Varma, A. K., Assimilation of INSAT-3D hydro estimator method retrieved for short range weather prediction. Q. J. R. Meteorol. Soc., 2017, 143, 384–394.
- Kumar, P., Kishtawal, C. M. and Pal, P. K., Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian region. Theor. Appl. Climatol., 2017, 127, 143–151.
Abstract Views: 419
PDF Views: 103