Open Access
Subscription Access
Green Synthesis, Characterization and Biological Activity of Synthesized Ruthenium Nanoparticles using Fishtail Fern, Sago Palm, Rosy Periwinkle and Holy Basil
Ruthenium nanoparticles (Ru NPs) of different sizes prepared using leaf extracts of fishtail fern (Nephrole-pis biserrata), sago palm (Cycas revoluta), rosy periwinkle (Catharanthus roseus) and holy basil (Oci-mum tenuiflorum) in methanol exhibited pronounced antifungal (against Aspergillus flavus) and antioxidant activity (DPPH, ABTS, SO, OH). The synthesized Ru NPs were characterized using FTIR, UV-visible spectra, fluorescence and XRD. A tentative synthetic mechanism of NPs has been hypothesized via redox mechanism. A correlation between size of nano-particles and plant groups has also been established.
Keywords
Antifungal, Antioxidant, Biosynthesis, Nano-Particles, Ruthenium.
User
Font Size
Information
- Iravani, S., Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638–2650.
- Akbarian, M., Mahjoub, S., Elahi, S. M., Zabihi, E. and Tashakko-rean, H., Urtica dioica Linn. extracts as a green catalyst for the biosynthesis of zinc oxide nanoparticles: characterization and cytotoxic effects on fibroblast and MCF-7 cell lines. New J. Chem., 2018, 42, 5822–5833.
- Oliver, S., Wagh, H., Liang, Y., Yang, S. and Boyer, C., Enhanc-ing the antimicrobial and antibiofilm effectiveness of silver nano-particles prepared by green synthesis. J. Mater. Chem., 2018, 6, 4124–4138.
- Mittal, A. K., Chisti, Y. and Banerjee, U. C., Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31, 346–356.
- Ahmed, S., Ahmed, M., Swami, B. L. and Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for anti-microbial applications: a green expertise. J. Adv. Res., 2016, 7, 17–28.
- Raj, R. A., Al Salhi, M. S. and Devanesan, S., Microwave-assisted synthesis of nickel oxide nanoparticles using Coriandrum sativum leaf extract and their structural-magnetic catalytic properties. Materials, 2017, 10, 460–472.
- Pandian, C. J., Palanivel, R. and Dhananasekaran, S., Green syn-thesis of nickel nanoparticles using Ocimumsanctum and their application in dye and pollutant adsorption. Chinese J. Chem. Eng., 2015, 23, 1307–1315.
- Zuverza-Mena, N., Medina-Velo, I. A., Barrios, A. C., Tan, W., Peratta-Videa, J. R. and Gardea-Torresdey, J. L., Copper nanopar-ticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ. Sci.-Proc. Imp., 2015, 17, 1783–1793.
- Shobha, G., Moses, V. and Anand, S., Biological synthesis of copper nanoparticles and its impact – a review. Int. J. Pharm. Sci. Invent., 2014, 3, 28–38.
- Chen, G. et al., Hollow ruthenium nanoparticles with small dimensions derived from Ni@Ru core@shell structure: synthesis and enhanced catalytic dehydrogenation of ammonia borane. Chem. Comm., 2012, 48, 8009–8011.
- Kang, J., Zhang, S. and Zhang, Q., Ruthenium nanoparticles sup-ported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew. Chem. Int. Ed., 2009, 48, 2565–2568.
- Gupta, S., Giordano, C. and Gradzielski, M., Microwave-assisted synthesis of small Ru nanoparticles and their role in degradation of congo red. J. Colloid. Interf. Sci., 2013, 411, 173–181.
- Yang, S., Besson, M. and Descorme, C., Catalytic wet air oxida-tion of succinic acid over Ru and Pt catalysts supported on CexZr1– xO2 mixed oxides. Appl. Catal. B: Environ., 2015, 165, 1–9.
- Veerakumar, P., Ramdass, A. and Rajagopal, S., Ruthenium nano-catalysis on redox reactions. J. Nanosci. Nanotechnol., 2013, 13, 4761–4786.
- Dikhtiarenko, A., Khainakov, S. A. and de Pedro, I., Series of 2D heterometallic coordination polymers based on ruthenium(III) oxalate building units: synthesis, structure, and catalytic and mag-netic properties. Inorg. Chem., 2013, 52, 3933–3941.
- Sahu, M., Shaikh, M., Khilari, S. and Ranganath, K. V., Rutheni-um nanoparticles stabilized on nano magnesium oxide in the pres-ence of ionic liquids: a highly active and efficient electrocatalyst for hydrogen evolution reaction. Catal. Green Chem. Eng., 2017, 1, 1–7.
- Gericke, D. et al., Green catalysis by nanoparticulate catalysts developed for flow processing: case study of glucose hydrogena-tion. RSC Adv., 2015, 21, 1–6.
- Hemraj-Benny, T., Tobar, N., Carrero, N. and Sumner, R., Micro-wave assisted green synthesis of ruthenium nanoparticles support-ed on non functional single walled carbon nanotubes for congo red dye degradation. Mater. Chem. Phys., 2018, 216, 72–81.
- Zhao, J., Hu, W., Li, H., Ji, M., Zhao, C., Wang, Z. and Hu, H., One-step green synthesis of a ruthenium/graphene composite as a highly efficient catalyst. RSC Adv., 2015, 5, 7679–7686.
- Dikhtiarenko, A., Khainakov, S. A., Khaynakova, O., García, J. R. and Gimeno, J., High-yielding green hydrothermal synthesis of ru-thenium nanoparticles and their characterization. J. Nanosci. Nan-otechnol., 2016, 6, 6139–6147.
- Hussain, I., Singh, N. B., Singh, A., Singh, H. and Singh, S. C., Green synthesis of nanoparticles and its potential application. Bio-technol. Lett., 2015, 38, 548–560.
- Srivastava, S. K. and Constanti, M., Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co and Li) by Pseudomonas aeruginosa SM1. J. Nanopart. Res., 2012, 14, 831–841.
- Ali, M. S., Anuradha, V., Abishek, R., Yogananth, N. and Sheeba, H., In vitro anticancer activity of green synthesis ruthenium nano-particle from Dictyota dichotoma marine algae. Nano World J., 2017, 3, 66–71.
- Gopinath, K., Karthika, V. and Gowri, S., Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superb Linn. leaf extract. J. Nanostruct. Chem., 2014, 4, 83–89.
- Kannan, S. K. and Sundrarajan, M., Green synthesis of ruthenium oxide nanoparticles: characterization and its antibacterial activity. Adv. Powder Technol., 2015, 26, 1505–1511.
- Zhang, Z., Suo, Y., He, J., Li, G., Hu, G. and Zheng, Y., Selective hydrogenation of ortho-chloronitrobenzene over biosynthesized ruthenium–platinum bimetallic nanocatalysts. Ind. Eng. Chem. Res., 2016, 55, 7061–7068.
- Pattanayak, P., Behera, P. and Das, D., Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharma-cogn. Rev., 2010, 4, 95–105.
- Ahmad, N. H., Rahim, R. A. and Mat, I., Catharanthus roseus aqueous extract is cytotoxic to jurkat leukaemic T-cells but induc-es the proliferation of normal peripheral blood mononuclear cells. Trop. Life Sci. Res., 2010, 21, 101–113.
- Kumar, B. S. and Kumar, V., Antimicrobial and antioxidant activi-ty of Cycas circinalis Linn. and Ionidium suffruticosum Ging. Innov. J. Med. Sci., 2017, 5, 12–14.
- Ibrahim, B., Nkoulémbéné, C. A., Mounguengui, S., Lépengué, A. N. and Azizet, Y. I., Antihypertensive potential of aqueous extract of Nephrolepis biserrata leaves on toad aorta. Med. Aromat. Plants, 2015, 5, 220–228.
- Holzwarth, U. and Gibson, N., The Scherrer equation versus the Debye–Scherrer equation. Nat. Nanotechnol., 2011, 6, 534–534.
- Balouiri, M., Sadiki, M. and Ibnsouda, S. K., Methods for in vitro evaluating antimicrobial activity: a review. J. Pharmaceut. Anal., 2016, 6, 71–79.
- Kedare, S. P. and Singh, R. P., Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol., 2011, 48, 412–422.
- Re, R., Pellegrini, N. and Proteggente, A., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical. Biol. Med., 1999, 26, 1231–1237.
- Hazra, B., Biswas, S. and Mandal, N., Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complem. Altern. Med., 2008, 8, 63–63.
- Thomas, C., Mackey, M. M. and Diaz, A. A., Hydroxyl radical is produced via the Fenton reaction in sub-mitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep., 2009, 14, 102–108.
- Chen, W., Ghosh, D. and Sun, J., Dithiocarbamate-protected ruthenium nanoparticles: synthesis, spectroscopy, electrochemistry and STM studies. Electrochim. Acta, 2007, 53, 1150–1156.
- Thrane, J. E., Kyle, M. and Striebel, M., Spectrophotometric anal-ysis of pigments: a critical assessment of a high-throughput method for analysis of algal pigment mixtures by spectral decon-volution. PLoS ONE, 2015, 10, 1–24.
- Parashar, U. K., Saxena, P. S. and Srivastava, A., Bioinspired syn-thesis of silver nanoparticles. Dig. J. Nanomater. Bios., 2009, 4, 159–166.
- Zhou, Y. C. and Rahaman, M. N., Hydrothermal synthesis and sintering of ultrafine CeO2 powders. J. Mater. Res., 1993, 8, 1680–1686.
- Abramoff, M. D., Magelhaes, P. J. and Ram, S. J., Image pro-cessing with ImageJ. Biophoton. Int., 2004, 11, 36.
- Klinger, M. and Aleš, J., Crystallographic tool box (CrysTBox): automated tools for transmission electron microscopists and crys-tallographers. J. Appl. Crystallogr., 2015, 48, 1107.
- Baliga, M. S., Jimmy, R. and Thilakchand, K. R., Ocimum Sanc-tum Linn. (holy basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr. Cancer, 2013, 65, 26–35.
- Ahmad, E., Arshad, M. and Khan, M. Z., Secondary metabolites and their multidimensional prospective in plant life. J. Pharma-cogn. Phytochem., 2017, 6, 205–214.
- Kumar, R., Ragunathan, R. and Kabesh, K., Phytochemical analy-sis of Catharanthus roseus plant extract and its antimicrobial activity. Int. J. Pure Appl. Biosci., 2015, 3, 162–172.
- Beer, H., Staehelin, T., Douglas, H. and Braude, A. I., Relation-ship between particle and biological activity of E. coli Boivin endotoxin. J. Clin. Invest., 1965, 44, 592–602.
- Sahayaraj, K., Borgio, J. F. and Raju, G., Antifungal activity of three fern extracts on causative agents of groundnut early leaf spot and rust diseases. J. Plant Prot. Res., 2009, 49, 1–4.
- Volpicella, M., Leoni, C., Fanizza, I., Placido, A., Pastorello, E. A. and Ceci, L. R., Overview of plant chitinases as food allergens. J. Agric. Food Chem., 2014, 62, 5734–5742.
Abstract Views: 548
PDF Views: 130