Open Access Open Access  Restricted Access Subscription Access

Non-Antibiotic Potential of Medicinal Plants to Combat Urinary Tract Infections


Affiliations
1 Department of Medicinal Plants, The Foundation for Medical Research, 84A, RG, Thadani Marg, Worli, Mumbai 400 018, India
 

Urinary tract infections (UTIs) are highly prevalent with frequent recurrent episodes. With advances in research and development of modern tools, the pathogenesis of uropathogens is well understood and various associated virulent features have been identified. These include, adherence and invasion of epithelial cells, biofilm formation, quorum sensing, production of certain metabolic enzymes/pigments and release of cytotoxins. Due to increasing reports on antibiotic resistance in UTIs, emphasis is being made on ‘nonantibiotic’ approaches for treatment of UTI. In recent years, research on traditional plants has gained popularity and medicinal plants are being considered as promising alternatives. Based on the available literature, this review compiles reports on plants and/or their compounds that affect virulent parameters of uropathogens to combat UTI. Along with the virulent features, the immunomodulatory effect of plants to eradicate pathogens is also briefly covered. The use of plants to target virulent mechanism(s), in order to prevent or treat UTI would minimize the increasing drug resistance as well as prevent disruption of healthy gut microbiota.

Keywords

Immunomodulation, Medicinal Plants, Urinary Tract Infections, Virulence.
User
Notifications
Font Size

  • Stamm, W. E. and Norrby, S. R., Urinary tract infections: disease panorama and challenges. J. Infect. Dis., 2001, 183, S1–S4.
  • Lüthje, P. and Brauner, A., Novel strategies in the prevention and treatment of urinary tract infections. Pathogens, 2016, 5, 13.
  • Al-Badr, A. and Al-Shaikh, G., Recurrent urinary tract infections management in women: a review. Sultan Qaboos Univ. Med. J., 2013, 13, 359–367.
  • Flores-Meireles, A., Walker, J., Caparon, M. and Hultgren, S., Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol., 2015, 13, 269– 284.
  • Brumbaugh, A. R. et al., Blocking Yersinia bactin import attenuates extraintestinal pathogenic Escherichia coli in cystitis and pyelonephritis and represents a novel target to prevent urinary tract infection. Infect. Immun., 2015, 83, 1443–1450.
  • Terlizzi, M. E., Gribaudo, G. and Maffei, M. E., Uropathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol., 2017, 8, 1556 (1–23).
  • Subashchandrabose, S. and Mobley, H. L. T., Virulence and fitness determinants of uropathogenic Escherichia coli. Microbiol. Spectr., 2015, 3, doi:10.1128/microbiolspec.UTI-0015-2012.
  • Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. and Hultgren, S. J., EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl. Med., 2014, 6, 254ra127.
  • Delcaru, C. et al., Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens, 2016, 5, 65.
  • Subashchandrabose, S. et al., Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc. Natl. Acad. Sci. USA, 2014, 111, 18327–18332.
  • Pulipati, S., Babu, P. S., Narasu, M. L. and Anusha, N., An overview on urinary tract infections and effective natural remedies. J. Med. Plants, 2017, 5, 50–56.
  • Sharma, A., Chandraker, S., Patel, V. K. and Ramteke, P., Antibacterial activity of medicinal plants against pathogens causing complicated urinary tract infections. Indian J. Pharm. Sci., 2009, 71, 136–139.
  • Gohari, A. R. and Saeidnia, S., The role of herbal medicines in treatment of urinary tract diseases. J. Nephropharmacol., 2014, 3, 13–14.
  • Godstime, O., Felix, E., Augustina, J. and Christopher, E., Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens – a review. J. Pharm. Chem. Biol. Sci., 2014, 2, 77–85.
  • Birdi, T., Daswani, P., Brijesh, S., Tetali, P., Natu, A. and Antia, N., Newer insights into the mechanism of action of Psidium guajava L. leaves in infectious diarrhoea. BMC Complem. Altern. Med., 2010, 10, 33.
  • Rasmussen, T. B. and Givskov, M., Quorum-sensing inhibitors as antipathogenic drugs. Int. J. Med. Microbiol., 2006, 296, 149–161.
  • Gupta, K., Sahm, D. F., Mayfield, D. and Stamm, W. E., Antimicrobial resistance among uropathogens that cause community‐ acquired urinary tract infections in women: A nationwide analysis. Clin. Infect. Dis., 2001, 33, 89–94.
  • Zone, C. P. and Guide, S., Antimicrobial resistance and urinary tract infections in the community. Signs, 2017, 6, 3531–3593.
  • Mihankhah, A., Khoshbakht, R., Raeisi, M. and Raeisi, V., Prevalence and antibiotic resistance pattern of bacteria isolated from urinary tract infections in Northern Iran. J. Res. Med. Sci., 2017, 22, 108.
  • Oli, A. K., Raju, S., Nagaveni, S. and Kelamani, R. C., Biofilm formation by multidrug resistant Enterococcus faecalis (MDEF) originated from clinical samples. J. Microbiol. Biotechnol. Res., 2012, 2, 284–288.
  • Catal, F. et al., Antimicrobial resistance patterns of urinary tract pathogens and rationale for empirical therapy in Turkish children for the years 2000–2006. Int. Urol. Nephrol., 2009, 41, 953–957.
  • Bischoff, S., Walter, T., Gerigk, M., Ebert, M. and Vogelmann, R., Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect. Dis., 2018, 18, 56.
  • El Sakka, N. and Gould, I. M., Role of old antimicrobial agents in the management of urinary tract Infection. Expert Rev. Clin. Pharm., 2016, 9, 1047–1056.
  • Cai, T. et al., The role of nutraceuticals and phytotherapy in the management of urinary tract infections: What we need to know? Arch. Ital. Urol. Androl., 2017, 89, 1–6.
  • Costantini, E., Giannitsas, K. and Illiano, E., The role of nonantibiotic treatment of community-acquired urinary tract infections. Curr. Opin. Urol., 2017, 27, 120–126.
  • Beerepoot, M. and Geerlings, S., Non-antibiotic prophylaxis for urinary tract infections. Pathogens, 2016, 5, 36.
  • Raditic, D. M., Complementary and integrative therapies for lower urinary tract diseases. Vet. Clin. North Am. Small Anim. Pract., 2015, 45, 857–878.
  • Mclellan, L. K. and Hunstad, D. A., Urinary tract infection: pathogenesis and outlook. Trends Mol. Med., 2016, 22, 946–957.
  • Muehlen, S. and Dersch, P., Anti-virulence strategies to target bacterial infections. Curr. Top. Microbiol. Immunol., 2016, 398, 147-183.
  • Rafsanjany, N., Lechtenberg, M., Petereit, F. and Hensel, A., Antiadhesion as a functional concept for protection against uropathogenic Escherichia coli: in vitro studies with traditionally used plants with antiadhesive activity against uropathogenic Escherichia coli. J. Ethnopharmacol., 2013, 145, 591–597.
  • Dorota, W., Marta, K. and Dorota, T. G., Effect of asiatic and ursolic acids on morphology, hydrophobicity, and adhesion of UPECs to uroepithelial cells. Folia Microbiol. (Praha), 2013, 58, 245–252.
  • Wojnicz, D., Kucharska, A. Z., Sokól-Lȩtowska, A., Kicia, M. and Tichaczek-Goska, D., Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urol. Res., 2012, 40, 683–697.
  • Vollmerhausen, T. L., Ramos, N. L., Dzung, D. T. N. and Brauner, A., Decoctions from Citrus reticulata Blanco seeds protect the uroepithelium against Escherichia coli invasion. J. Ethnopharmacol., 2013, 150, 770–774.
  • Mohanty, S. et al., Extract of Clinopodium bolivianum protects against E. coli invasion of uroepithelial cells. J. Ethnopharmacol., 2017, 198, 214–220.
  • Fazliana, M. et al., Labisia pumila var. alata reduces bacterial load by inducing uroepithelial cell apoptosis. J. Ethnopharmacol., 2011, 136, 111–116.
  • Beydokthi, S. S., Sendker, J., Brandt, S. and Hensel, A., Traditionally used medicinal plants against uncomplicated urinary tract infections: Hexadecyl coumaric acid ester from the rhizomes of Agropyron repens (L.) P. Beauv. with antiadhesive activity against uropathogenic E. coli. Fitoterapia, 2017, 117, 22–27.
  • Lüthje, P., Dzung, D. N. and Brauner, A., Lactuca indica extract interferes with uroepithelial infection by Escherichia coli. J. Ethnopharmacol., 2011, 135, 672–677.
  • Raffa, R. B., Bacterial communication (‘Quorum Sensing’) via ligands and receptors: A novel pharmacologic target for the design of antibiotic drugs. J. Pharmacol. Exp. Ther., 2004, 312, 417– 423.
  • Alshami, I. and Alharbi, A. E., Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity Candida albicans isolated from recurrent urinary tract infections. Asian Pac. J. Trop. Biomed., 2014, 4, 104–108.
  • Gala, V. C., John, N. R., Bhagwat, A. M., Datar, A. G., Kharkar, P. S. and Desai, K. B., Attenuation of quorum sensing-regulated behaviour by Tinospora cordifolia extract and identification of its active constituents. Indian J. Med. Res., 2016, 144, 92–103.
  • Yarmolinsky, L., Bronstein, M. and Gorelick, J., Inhibition of bacterial quorum sensing by plant extracts. Israel J. Plant Sci., 2015, 62, 294–297.
  • Krishnan, T., Yin, W. and Chan, K., Inhibition of quorum sensingcontrolled virulence factor production in Pseudomonas aeruginosa PAO1 by ayurveda spice clove (Syzygium Aromaticum) bud extract. Sensors, 2012, 12, 4016–4030.
  • Mary, R. N. I. and Banu, N., Inhibition of antibiofilm mediated virulence factors production in urinary pathogen Serratia marcescens by Vitex trifolia. Int. J. Sci. Res., 2014, 3, 2012–2014.
  • Salini, R. and Pandian, S. K., Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog. Dis., 2015, 73, 1–32.
  • Jones, B. V., Young, R., Mahenthiralingam, E. and Stickler, D. J., Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter associated urinary tract infection. Infect. Immun., 2004, 72, 3941–3950.
  • Mobley, H. L., Chippendale, G. R., Swihart, K. G. and Welch, R., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect. Immun., 1991, 59, 2036–2042.
  • Kaushik, K. S., Kapila, K. and Chumber, S. K., Answer to photo quiz: Serratia marcescens. J. Clin. Microbiol., 2013, 51, 4289.
  • Asadishad, B., Hidalgo, G. and Tufenkji, N., Pomegranate materials inhibit flagellin gene expression and flagellar-propelled motility of uropathogenic Escherichia coli strain CFT073. FEMS Microbiol. Lett., 2012, 334, 87–94.
  • Packiavathy, I. A., Agilandeswari, P., Musthafa, K. S., Karutha Pandian, S. and Veera R. A., Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram-negative bacterial pathogens. Food Res. Int., 2012, 45, 85–92.
  • Roshid, M. and Chouduri, A. U., Antibacterial, anti-swarming potential of ethanol extracts of Physalis minima L. whole plant and Urena lobata L. ischolar_main on cephalosporin resistant Proteus species. Glob. J. Res. Med. Plants Indig. Med., 2014, 3, 184–195.
  • Bai, S., Bharti, P., Seasotiya, L., Malik, A. and Dalal, S., In vitro screening and evaluation of some Indian medicinal plants for their potential to inhibit Jack bean and bacterial ureases causing urinary infections. Pharm. Biol., 2015, 53, 326–333.
  • Ranjbar-Omid, M., Arzanlou, M., Amani, M., Shokri Al-Hashem, S. K., Mozafari, N. A. and Doghaheh, H. P., Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro. FEMS Microbiol. Lett., 2015, 362, 1–9.
  • Chouduri, A. U., Roshid, M., Uddin, N. and Wadud, A., Deactivation of uropathogenic Proteus bacterial toxin by polyphenols of Tamarindus indica bark : a robust inhibition of hemolysis. J. Microbiol. Res., 2015, 5, 128–133.
  • Salini, R., Sindhulakshmi, M., Poongothai, T. and Pandian, S. K., Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens. Antonie van Leeuwenhoek., 2015, 107, 1095–1106.
  • Luo, J. et al., Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by down regulating the MAPK and NFκB signal-transduction pathways. Drug Des. Dev. Ther., 2016, 10, 183–203.
  • Song, J. and Abraham, S. N., Innate and adaptive immune responses in the urinary tract. Eur. J. Clin. Invest., 2008, 38, 21–28.
  • Abraham, S. N. and Miao, Y., The nature of immune responses to urinary tract infections. Nat. Rev. Immunol., 2015, 15, 655–663.
  • Salkar, K., Chotalia, C. and Salvi, R., Tinospora cordifolia: an antimicrobial and immunity enhancer plant. Int. J. Sci. Res., 2017, 6, 1603–1607.
  • Lüthje, P., Lokman, E. F., Sandström, C., Östenson, C. G. and Brauner, A., Gynostemma pentaphyllum exhibits anti-inflammatory properties and modulates antimicrobial peptide expression in the urinary bladder. J. Funct. Food., 2015, 17, 283–292.
  • Kumar, K. M. and Ramaiah, S., Pharmacological importance of Echinacea purpurea. Int. J. Pharma Biol. Sci., 2011, 2, 304–314.
  • Xue, W., Qi, J. and Du, L., Intervention effect and mechanism of curcumin in chronic urinary tract infection in rats. Asian Pac. J. Trop. Med., 2017, 10, 594–598.
  • Schink, A. et al., Screening of herbal extracts for TLR2-and TLR4-dependent anti-inflammatory effects. PLoS ONE, 2018, 13, e0203907.
  • Han, P. et al., Metabolomics reveals immunomodulation as a possible mechanism for the antibiotic effect of Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross. Metabolomics, 2018, 14, 91.
  • Riaz, G. and Chopra, R., A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed. Pharmacother., 2018, 102, 575–586.
  • Matsui, M., Kumar-Roine, S., Darius, H. T., Chinain, M., Laurent, D. and Pauillac, S., Characterisation of the anti-inflammatory potential of Vitex trifolia L. (Labiatae), a multipurpose plant of the Pacific traditional medicine. J. Ethnopharmacol., 2009, 126, 427–433.
  • Vasileiou, I., Katsargyris, A., Theocharis, S. and Giaginis, C., Current clinical status on the preventive effects of cranberry consumption against urinary tract infections. Nutr. Res., 2013, 33, 595–607.
  • Gupta, A., Dwivedi, M., Mahdi, A. A., Gowda, G. A. N., Khetrapal, C. L. and Bhandari, M., Inhibition of adherence of multi-drug resistant E. coli by proanthocyanidin. Urol. Res., 2012, 40, 143–150.
  • Wojnicz, D., Tichaczek-Goska, D., Korzekwa, K., Kicia, M. and Hendrich, A. B., Study of the impact of cranberry extract on the virulence factors and biofilm formation by Enterococcus faecalis strains isolated from urinary tract infections. Int. J. Food Sci. Nutr., 2016, 67, 1005–1016.
  • Maisuria, V. B., Los Santos, Y. L., Tufenkji, N. and Déziel, E., Cranberryderived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci. Rep., 2016, 6, 2–13.
  • Wagner, H. and Ulrich-Merzenich, G., Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16, 97–110.
  • Zhao, Z. et al., An aqueous extract of Yunnan baiyao inhibits the quorum-sensing-related virulence of Pseudomonas aeruginosa. J. Microbiol., 2013, 51, 207–212.
  • Alam, E. A., Evaluation of anti-oxidant and antibacterial activities of Egyptian Maydis stigma (Zea mays hairs) rich in some bioactive constituents. J. Am. Sci., 2011, 7, 726–729.
  • Al-Snafi, A. E., Chemical constituents and pharmacological importance of Agropyron repens – a review. Res. J. Pharmacol. Toxicol., 2015, 1, 37–41.
  • Izzo, A. A. et al., Biological screening of Italian medicinal plants for antibacterial activity. Phytother. Res., 1995, 9, 281–286.
  • Mirtaghi, S. M., Evaluation of antibacterial activity of Urtica dioica L. leaf ethanolic extract using agar well diffusion and disc diffusion methods. Med. Lab. J., 2016, 10, 15–21.
  • Rastogi, S., Pandey, M. M., Kumar, A. and Rawat, S., Medicinal plants of the genus Betula – Traditional uses and a phytochemical – pharmacological review. J. Ethnopharmacol., 2015, 159, 62–83.
  • Ashraf, K., Sultan, S. and Adam, A., Orthosiphon stamineus Benth. is an outstanding food medicine: review of phytochemical and pharmacological activities. J. Pharm. Bioall. Sci., 2018, 10, 109–118.
  • Kahkeshani, N. et al., Antioxidant and burn healing potential of Galium odoratum extracts. Res. Pharm. Sci., 2013, 8, 197– 203.
  • Ferlemi, A. and Lamari, F. N., Berry leaves : an alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants, 2016, 5, 17.
  • Damián-Reyna, A., Jesu, R. M. C. De and Cha, C., Polyphenolic content and bactericidal effect of Mexican Citrus limetta and Citrus reticulata. J. Food Sci. Technol., 2017, 54, 531–537.
  • Sandhu, N. S., Kaur, S. and Chopra, D. Equisetum arvense: pharmacology and phytochemstry – a review. Asian J. Pharm. Clin. Res., 2010, 3, 146–150.
  • Rhiouani, H., El-Hilaly, J. and Israili, Z. H., Acute and subchronic toxicity of an aqueous extract of the leaves of Herniaria glabra in rodents. J. Ethnopharmacol., 2008, 118, 378–386.
  • Daswani, P. G., Gholkar, M. S. and Birdi, T. J., Psidium guajava – a single plant for multiple health problems of rural Indian population. Pharmacogn. Rev., 2017. 11, 167–174.
  • Dhanik, J., Arya, N. and Nand, V., A review on Zingiber officinale. J. Pharmacogn. Phytochem., 2017, 6, 174–184.
  • Daswani, P. G., Brijesh, S., Tetali, P., Antia, N. H. and Birdi, T. J., Antidiarrhoeal activity of Zingiber offinale (Rosc.). Curr. Sci., 2010, 98, 222–229.
  • Khan, T. et al., Selected hepatoprotective herbal medicines: evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res., 2018, 32, 199– 215.
  • Arun, N. and Singh, D. P., Punica granatum: a review on pharmacological and therapeutic properties. Int. J. Pharm. Sci. Res., 2012, 3, 1240.
  • Mnif, S. and Aifa, S., Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers., 2015, 12, 733–742.
  • Islam, M. T. and Uddin, M. A., A revision on Urena lobata L. Int. J. Med., 2017, 5, 126–131.
  • Singh, S., Kumar, M., Kumar, P. and Kumar, V., Traditional knowledge to clinical trials: a review on therapeutic actions of Emblica officinalis. Biomed. Pharmacother., 2017, 93, 1292– 1302.
  • Sowmya, L. K., Deepika, S. D., Geetha, S. and Sri, L. M., Biochemical and antimicrobial analysis of rose petals (Rosa indica). Eur. J. Pharm. Med. Res., 2017, 4, 637–640.
  • Bag, A., Bhattacharyya, S. K. and Chattopadhyay, R. R., The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac. J. Trop. Biomed., 2013, 3, 244–252.
  • Lee, H. J. H. and Ji, D. Y. D., Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol., 2018, 27, 219-225
  • Pereira, A., Menezes, P., Cristina, S., Trevisan, C., Barbalho, M. and Guiguer, E. L., Tamarindus indica L. A plant with multiple medicinal purposes. J. Pharmacogn. Phytochem., 2016, 5, 50–54.
  • Elumalai, D., Hemavathi, M., Vijayalakshmi, C. and Kunyil, P., Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol. Control, 2017, 2, 15–26.
  • Zhao, Q. and Cathie, X. C., Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull., 2016, 61, 1391–1398.

Abstract Views: 433

PDF Views: 123




  • Non-Antibiotic Potential of Medicinal Plants to Combat Urinary Tract Infections

Abstract Views: 433  |  PDF Views: 123

Authors

Poonam G. Daswani
Department of Medicinal Plants, The Foundation for Medical Research, 84A, RG, Thadani Marg, Worli, Mumbai 400 018, India

Abstract


Urinary tract infections (UTIs) are highly prevalent with frequent recurrent episodes. With advances in research and development of modern tools, the pathogenesis of uropathogens is well understood and various associated virulent features have been identified. These include, adherence and invasion of epithelial cells, biofilm formation, quorum sensing, production of certain metabolic enzymes/pigments and release of cytotoxins. Due to increasing reports on antibiotic resistance in UTIs, emphasis is being made on ‘nonantibiotic’ approaches for treatment of UTI. In recent years, research on traditional plants has gained popularity and medicinal plants are being considered as promising alternatives. Based on the available literature, this review compiles reports on plants and/or their compounds that affect virulent parameters of uropathogens to combat UTI. Along with the virulent features, the immunomodulatory effect of plants to eradicate pathogens is also briefly covered. The use of plants to target virulent mechanism(s), in order to prevent or treat UTI would minimize the increasing drug resistance as well as prevent disruption of healthy gut microbiota.

Keywords


Immunomodulation, Medicinal Plants, Urinary Tract Infections, Virulence.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi9%2F1459-1468