Open Access Open Access  Restricted Access Subscription Access

Physico-Chemical, Photocatalytic and Cytotoxicity Evaluation of Annona muricata L. Fruit Extract Derived Zinc Oxide Nanoparticles in Comparison to the Commercial Chemical Version


Affiliations
1 Recombinant DNA Laboratory, Department of Biotechnology, School of Health Sciences, University of Calicut, Calicut University PO, Malappuram 673 635, India
2 School of Health Sciences, University of Calicut, Calicut University PO, Malappuram 673 635, India
 

The present study deployed a sol–gel method, employing an aqueous extract from the fruit of soursop, Annona muricata L. for the bio-assisted synthesis of zinc oxide nanoparticles (AmFZnNPs). Following the physico-chemical characterization by UV-Vis spectrometry, Fourier-transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, AmFZnNPs were evaluated for photocatalytic and bioactivities in comparison to commercially available chemically-derived zinc oxide nanoparticles (ZnONPs). AmFZnNPs exhibited good photocatalytic and potent antimicrobial activity in comparison to the weak and inefficient action of ZnONPs. Cytotoxicity of AmFZnNPs against colon carcinoma and leukaemic cells conspicuously contrasted with their non-lethality towards human lymphocytes/erythrocytes as well as onion ischolar_main tip cells whilst ZnONPs displayed high toxicity against all cell types tested except leukaemic cells. Besides the greater acceptability of production via eco-friendly green route, the superiority of AmFZnNPs over their chemically-derived counterparts is clearly demonstrated by our results.

Keywords

Annona muricata, Antimicrobial, Cytotoxicity, Nanoparticles, Photocatalytic, Zinc Oxide.
User
Notifications
Font Size

  • Sabir, S., Arshad, M. and Chaudhari, S. K., Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci. World J., 2014, 2014, 1–8.
  • Govindasamy, R. et al., Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites. Vet. Parasitol., 2013, 191, 332–339.
  • Singh, P. R., Shukla, V. K., Yadav, R. S., Sharma P. K., Singh, P. K. and Pandey, A. C., Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mat. Lett., 2011, 2, 313–317.
  • Nagarajan, S. and Kuppusamy, K. A., Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J. Nanobiotechnol., 2013, 34, 209–214.
  • Elia, P., Zach, R., Hazan, S., Kolusheva, S., Porat, Z. and Zeiri, Y., Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed., 2014, 9, 4007–4021.
  • Kumar, B., Smita, K., Cumbal, L. and Debut, A., Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J. Biol. Sci., 2014, 21, 605–609.
  • Kotakadi, V. S., Rao, Y. S., Gaddam, S. A., Prasad, T. N., Reddy, A. V. and Gopal, D. V., Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus and its anti microbial activity. Colloid. Surf. B, 2013, 105, 194–198.
  • Krishnamurthy, N. B., Nagaraj, B., Malakar, B., Liny, P. and Dinesh, R., Green synthesis of gold nanoparticles using Tagetes erecta L (Marigold) flower extract and evaluation of their antimicrobial activities. Int. J. Pharm. Biol. Sci., 2012, 3, 212–221.
  • Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S., Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed., 2012, 2, 574–580.
  • Padma, S. V. and Dhara, S., Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl. Nanosci., 2012, 2, 163–168.
  • Rizwan, W., Amrita, M., Soon, Y., Young-Soon, K. and HyungShik, S., Antibacterial activity of ZnO nanoparticles prepared via non- hydrolytic solution route. Appl. Microbiol. Biotechnol., 2010, 87, 1917–1925.
  • Sangeetha, G., Rajeswari, S. and Venckatesh, R., Green synthesis of zinc oxide nanoparticles by Aloe barbedensis miller leaf extract: structure and optical properties. Mater. Res. Bull., 2011, 46, 2560–2566.
  • Diallo, A., Ngom, B. D., Park, E. and Maaza, M., Green synthesis of ZnO nanoparticles by Aspalathus linearis: structural and optical properties. J. Alloy. Compd., 2015, 646, 425–430.
  • Nagajyothi, P. C., Minh, T. N., Sreekanth, T. V. M., Lee, J., Lee, D. J. and Lee, K. D., Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater. Lett., 2013, 108, 160–163.
  • Ramesh, M., Anbuvannan, M. and Viruthagiri, G., Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A, 2015, 136, 864–870.
  • Patel, S. and Patel, J. K., A review on a miracle fruits of Annona muricata. J. Pharmacogn. Phytochem., 2016, 5, 137–148.
  • Ishola, I. O., Awodele, O., Olusayero, A. M. and Ochieng, C. O., Mechanisms of analgesic and anti-inflammatory properties of Annona muricata Linn. (Annonaceae) fruit extract in rodents. J. Med. Food, 2014, 17, 1375–1382.
  • Astirin, O., Artanti, A., Fitria, M., Perwitasari, E. and Prayitno, A., Annona muricata Linn leaf induce apoptosis in cancer cause virus. J. Cancer Ther., 2013, 4, 1244–1250.
  • Ferreira, L., Castro, P., Chagas, A., Franca, S. and Beleboni, R., In vitro anthelmintic activity of aqueous leaf extract of Annona muricata L. (Annonaceae) against Haemonchus contortus from sheep. Exp. Parasitol., 2013, 134, 327–332.
  • Hamizah, S., Roslida, A. H., Fezah, O., Tan, K. L., Tor, Y. S. and Tan, C. I., Chemopreventive potential of Annona muricata L leaves on chemically-induced skin papillomagenesis in mice. Asian Pac. J. Cancer Prev., 2012, 13, 2533–2539.
  • de Sousa, O. V., Vieira, G. D., de Jesus, R. G., de Pinho, J., Yamamoto, C. H. and Alves, M. S., Antinociceptive and antiinflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. Int. J. Mol. Sci., 2010, 11, 2067–2078.
  • Han, B., Wang, T. D., Shen, S. M., Yu, Y., Mao, C., Yao, Z. J. and Wang, L. S., Annonnaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase3-independent mechanisms. BMC Cancer, 2015, 15, 139.
  • Moghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M. and Kadir, H. A., Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci., 2015, 16, 15625–15658.
  • Rupprecht, J. K., Hui, Y. H. and McLaughlin, J. L., Annonaceous acetogenins: a review. J. Nat. Prod., 1990, 53, 237–278.
  • Samat, N. A. and Roslan, M. N., Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram. Int., 2013, 39, S545–S548.
  • Hudlikar, M., Shreeram, J., Mayur, D. and Kisan, K., Latexmediated synthesis of ZnS nanoparticles: green synthesis approach. J. Nanopart. Res., 2012, 14, 865.
  • Bandekar, G., Rajurkar, N. S., Mulla, I. S., Mulik, U. P., Amalnerkar, D. P. and Adhyapak, P. V., Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Appl. Nanosci., 2014, 4, 199–208.
  • Salem, W., Leitner, D. R. and Zingl, F. G., Antibacterial activity of zinc and silver nanoparticles against Vibrio cholera and enterotoxic Escherichia coli. Int. J. Med. Microbiol., 2015, 305, 85–95.
  • Reddy, L. S., Nisha, M. M., Joice, M. and Shilpa, P. N., Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm. Biol., 2014, 52, 1388–1397.
  • Vani, C., Sergin, G. K. and Annamalai, A., A study on the effect of zinc oxide nanoparticles in Staphylococcus aureus. Int. J. Pharm. Biol. Sci., 2011, 2, 326–335.
  • Sahu, D., Kannan, G. M., Tailang, M. and Vijayaraghavan, R., In vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. J. Nanosci., 2016, 2016, 1–9.
  • Sanaeimehr, Z., Javadi, I. and Namvar, F., Antiangiogenic and antiapoptotic effects of green – synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol., 2018, 9, 3.
  • Namvar, F., Rahman, H. S., Mohamad, R., Azizi, S., Tahir, P. M., Chartrand, M. S. and Yeap, S. K., Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. Evid.-Based Complement. Alternat. Med., 2015, 2015, 1–11.
  • Montoro, A., Soriano, J. M. and Barquinero, J. F., Assessment in vitro of cytogenetic and genotoxic effects of propolis on human lymphocytes. Food Chem. Toxicol., 2012, 50, 216–221.
  • Khan, M., Naqvi, A. H. and Ahmad, M., Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol. Rep., 2015, 2, 765–774.
  • Raguvaran, R., Manuja, A., Singh, S., Chopra, M., Manuja, B. K. and Dimri, U., Zinc oxide nanoparticles induced hemolytic cytotoxicity in horse red blood cells. Int. J. Pharm. Sci. Res., 2015, 6, 1166–1169.
  • Junqueira, L. C. and Carneiro, J., Histologia basica. Guanabara Koogan, Rio de Janeiro, 2004, 8, 285–300.
  • World Health Organization, Quality control of Giemsa stock solution and buffered water, 2016, 1–11; http://www.wpro.who.int/mvp/lab_quality/2096_oms_gmp_sop_03c_rev.pdf (accessed on 11 February 2018).
  • Obute, G. C., Ekeke, C. and Izuka, D. C., Genotoxicity assessment of refined petroleum products and popular local soft drink (Zobo) in daily use in Nigeria. Res. J. Mutagen., 2016, 6, 22–30.
  • Taranath, T. C., Bheemanagouda, N. P., Santosh, T. U. and Sharath, B. S., Cytotoxicity of zinc nanoparticles fabricated by Justicia adathoda L. on ischolar_main tips of Allium cepa L. – a model approach. Environ. Sci. Pollut. Res., 2015, 22, 8611–8617.
  • Pandey, H., Kumar, V. and Roy, B. K., Assessment of genotoxicity of some common food preservatives using Allium cepa L. as a test plant. Toxicol. Rep., 2014, 1, 300–308.
  • Bhagyanathan, N. K. and Thoppil, J. E., Pre-apoptotic activity of aqueous extracts of Cynanchum sarcomedium Mieve & Liede on cells of Allium cepa and human erythrocytes. Protoplasma, 2016, 253, 1433–1438.
  • Talam, S., Karumuri, S. R. and Gunnam, N., Synthesis, characterization and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol., 2012, 2012, 1–6.
  • Zak, A. K., Razali, R., Abd Majid, W. H. and Darroudi, M., Synthesis and characterization of a narrow size distribution zinc oxide nanoparticles. Int. J. Nanomed., 2011, 6, 1399–1403.
  • Majid, D., Zahra, S., Reza, K. O., Ali, K. Z., Hadi, K. and Mohamad, H. N., Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram. Int., 2013, 39, 9195–9199.
  • John, C., Interpretation of infrared spectra, a practical approach. Encyclopedia Analytical Chemistry, John Wiley and Sons, USA, 2000, 10815–10837.
  • Rajendran, S. P. and Sengodan, K., Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J. Nanosci., 2017.
  • Senthilkumar, S. R. and Sivakumar, T., Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci., 2014, 6, 461–465.
  • Dobrucka, R. and Dugaszewska, J., Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pretense flower extract. Saudi J. Biol. Sci., 2016, 23, 517–523.
  • Chandrasekhar, N. and Vinay, S. P., Yellow colored blooms of Argemone Mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity. Appl. Nanosci., 2017, 7, 851–861.
  • Gnanasangeetha, D. and Sarala, T. D., Biogenic production of zinc oxide nanoparticles using Acalypha Indica. J. Chem. Biol. Phys. Sci., 2014, 4, 238–246.
  • Bhuyan, T., Kavita, K., Khanuja, M., Prasad, R. and Varma, A., Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mat. Sci. Semicon. Proc., 2015, 32, 55–61.
  • Davar, F., Majedi, A. and Mirzaei, A., Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J. Am. Ceram. Soc., 2015, 98, 1739–1746.
  • Suresh, D., Nethravathi, P. C., Udayabhanu, Rajanaika, H., Nagabhushana, H. and Sharma, S. C., Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mat. Sci. Semicon.. Proc., 2015, 3, 1446–1454.
  • Gunalan, S., Sivaraj, R. and Rajendran, V., Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci: Mater. Int., 2012, 2, 693–700.
  • Emami-Karvani, Z. and Chehrazi, P., Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res., 2011, 5, 1368–1373.
  • Ali, K., Dwivedi, S., Azam, A., Saquib, Q., Al-Said, M. S., Al khedhairy, A. A. and Musarrat, J., Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J. Colloid Interf. Sci., 2016, 472, 145–156.
  • Sirelkhatim, A. et al., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7, 219–242.
  • Xie, Y., He, Y., Irwin, P. L., Jin, T. and Shi, X., Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 2011, 77, 2325–2331.
  • Raghupathi, K. R., Koodali, R. T., Manna, A. C., Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27, 4020–4028.
  • Pati, R. et al., Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed.: Nanotechnol., Biol. Med., 2014, 10, 1195–1208.
  • Siddiqi, K. S., Rahman, A., Tajuddin and Husen, A., Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13, 141(1–13).
  • Alarifi, S., Ali, D., Alkahtani, S., Verma, A., Ahamed, M., Ahmed, M. and Alhadlaq, H. A., Induction of oxidative stress, DNA damage and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int. J. Nanomed., 2013, 8, 983–993.
  • Moghaddam, A. B., Moniri, M., Azizi, S., Rahim, R. A., Ariff, A. B., Navaderi, M. and Mohamad, R., Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes, 2017, 8, 281.
  • Biplab, K. C., Paudel, S. N., Rayamajhi, S., Karna, D., Adhikari, S., Shrestha, B. G. and Bisht, G. K. C., Enhanced preferential cytotoxicity through surface modification: synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell (MDA-MB-231). Chem. Cent. J., 2016, 10, 16.
  • Venkatesan, J., Kim, S. K. and Shim, M. S., Antimicrobial, antioxidant and anticancer activities of biosynthesized silver nanoparticles using algae Ecklonia cava. Nanomaterials, 2016, 6, 235.
  • Geetha, R., Ashokkumar, T., Tamilselvan, S., Govindaraju, K., Sadiq, M. and Singaravelu, G., Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol., 2013, 4, 91–98.
  • Premanathan, M., Karthikeyan, K., Jeyasubramanian, K. and Manivannan, G., Selective toxicity of ZnO nanoparticles towards gram positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine, 2011, 7, 184–192.
  • Rasmussen, J. W., Martinez, E., Louka, P. and Wingett, D. G., Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7, 1063–1077.
  • Tso, C., Zhung, C., Shih, Y., Tseng, Y., Wu, S. and Doong, R., Stability of metal oxide nanoparticles in aqueous solutions. Water Sci. Technol., 2010, 61(1), 127–133.
  • Bisht, G. and Rayamajhi, S., ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine, 2016, 3(9), 1–11.
  • Grossman, H. J. and McNeil, S. E., Nanotechnology in cancer medicine. ACS Nano, 2012, 4(10), 5641–5646.
  • Health Effects Test Guidelines, United States Environmental Protection Agency. Prevention, Pesticides and Toxic Substances (7101), EPA 712-C-98-223, 1998.
  • Gümüş, D., Berber, A. A., Ada, K. and Aksoy, H., In vitro genotoxic effects of ZnO nanomaterials in human peripheral lymphocytes. Cytotechnology, 2014, 66, 317–325.
  • Mussarat, J., Saquib, Q., Azam, A. and Naqvi, S. A. H., Zinc oxide nanoparticles induced-DNA damage in human lymphocytes. Int. J. Nanopart., 2009, 2, 402–414.
  • Horie, M. and Fujita, K., Chapter four-toxicity of metal oxides nanoparticles. Adv. Mol. Toxicol., 2011, 5, 145–178.
  • Lin, W., Xu, Y., Huang, C., Ma, Y., Shannon, K. B., Chen, D. and Huang, Y., Toxicity of nano- and micro-sized zinc oxide particles in human lung epithelial cells. J. Nanopart. Res., 2009, 11, 25–39.
  • Rikans, L. E. and Hornbrook, K. R., Lipid peroxidation, antioxidant protection and aging. Biochem. Biophys. Acta, 1997, 1362, 116–127.
  • Das, D., Nath, B. C., Phukon, P., Kalita, A. and Dolui, S. K., Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloid Surf. B, 2013, 111, 556–560.
  • Shirsekar, P. P., Kanhe, N. S. and Mathe, V. L., Interaction of zinc oxide nanoparticles with human red blood cells. Bionano Front., 2016, 9, 99–104.
  • Maiworm, A. I., Presta, G. A., Santos-Filho, S. D., Paoli, S. D., Giani, T. S., Fonseca, A. S. and Bernardo-Filho, M., Osmotic and morphological effects on red blood cell membrane: action of an aqueous extract of Lantana camara. Braz. J. Pharmacogr., 2008, 18, 42–46.
  • Prajitha, V. and Thoppil, J. E., Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnology, 2017, 69, 123–133.
  • Babu, E. P. et al., Size dependent uptake and hemolytic effect of zinc oxide nanoparticles on erythrocytes and biomedical potential of ZnO-Ferulic acid conjugates. Sci. Rep., 2017, 7, 4203(1–12).
  • Ghosh, M. et al., Effect of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses and cell cycle arrest. Mutat. Res.-Genet. Toxicol. Environ. Mutagen, 2016, 807, 25–32.
  • Kumari, M., Khan, S. S., Pakrashi, S., Mukherjee, A. and Chandrasekaran, N., Cytogenetic and genotoxic effects of zinc oxide nanoparticles on ischolar_main cells of Allium cepa. J. Hazard. Mater., 2011, 190, 613–621.

Abstract Views: 423

PDF Views: 139




  • Physico-Chemical, Photocatalytic and Cytotoxicity Evaluation of Annona muricata L. Fruit Extract Derived Zinc Oxide Nanoparticles in Comparison to the Commercial Chemical Version

Abstract Views: 423  |  PDF Views: 139

Authors

Ahlam Abdul Aziz
Recombinant DNA Laboratory, Department of Biotechnology, School of Health Sciences, University of Calicut, Calicut University PO, Malappuram 673 635, India
V. S. Shaniba
Recombinant DNA Laboratory, Department of Biotechnology, School of Health Sciences, University of Calicut, Calicut University PO, Malappuram 673 635, India
P. R. Jayasree
School of Health Sciences, University of Calicut, Calicut University PO, Malappuram 673 635, India
P. R. Manish Kumar
Recombinant DNA Laboratory, Department of Biotechnology, School of Health Sciences, University of Calicut, Calicut University PO, Malappuram 673 635, India

Abstract


The present study deployed a sol–gel method, employing an aqueous extract from the fruit of soursop, Annona muricata L. for the bio-assisted synthesis of zinc oxide nanoparticles (AmFZnNPs). Following the physico-chemical characterization by UV-Vis spectrometry, Fourier-transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, AmFZnNPs were evaluated for photocatalytic and bioactivities in comparison to commercially available chemically-derived zinc oxide nanoparticles (ZnONPs). AmFZnNPs exhibited good photocatalytic and potent antimicrobial activity in comparison to the weak and inefficient action of ZnONPs. Cytotoxicity of AmFZnNPs against colon carcinoma and leukaemic cells conspicuously contrasted with their non-lethality towards human lymphocytes/erythrocytes as well as onion ischolar_main tip cells whilst ZnONPs displayed high toxicity against all cell types tested except leukaemic cells. Besides the greater acceptability of production via eco-friendly green route, the superiority of AmFZnNPs over their chemically-derived counterparts is clearly demonstrated by our results.

Keywords


Annona muricata, Antimicrobial, Cytotoxicity, Nanoparticles, Photocatalytic, Zinc Oxide.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi9%2F1492-1504