Open Access Open Access  Restricted Access Subscription Access

Isolation of Fungi from Various Habitats and their Possible Bioremediation


Affiliations
1 Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Brunei Darussalam
 

Fungi are the most diverse and adaptable group of living organisms. The literature highlights that colonization density and fungal diversity can be affected by factors such as salinity, pH, temperature, altitude and availability of nutrients. The present article discusses isolation and characterization of fungi from different ecosystems like forests, mangroves and coastal areas. Fungal interaction with ecosystems is reported to play an important role in the biodiversity, survivability, propagation and productivity of plants. Fungi have established a beneficial association with numerous hosts and have the capability to degrade environmental pollutants such as hydrocarbons and by-products. Hence, fungi and fungal products like extracellular hydrolytic and lignin-degrading enzymes, and surfactants offer eco-friendly and cost-effective strategies to address pollution, especially with respect to bioremediation of oil spills and polyaromatic hydrocarbons.

Keywords

Bioremediation, Fungi, Habitats, Hydrocarbon Degradation.
User
Notifications
Font Size

  • Simões, M. F. et al., Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea – a metagenomic approach. Genomic. Proteomic. Bioinformat., 2015, 13, 310–320.
  • Behera, B. C., Mishra, R. R. and Thatoi, H. N., Diversity of soil fungi from mangroves of Mahanadi delta, Orissa, India. J. Microbiol. Biotechnol. Res., 2012, 2, 375–378.
  • Madavasamy, S. and Panneerselvam, A., Diversity of mycoflora in mangrove soil at Karankadu, Ramanathapuram (dt), east coast of Tamil Nadu, India. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2, 50– 61.
  • Khalil, A. M. A., El-Sheikh, H. H. and Sultan, M. H., Distribution of fungi in mangrove soil of coastal areas at Nabq and Ras Mohammed protectorates. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2, 264–274.
  • Ramírez-Elías, M. A. et al., Identification of culturable microbial functional groups isolated from the rhizosphere of four species of mangroves and their biotechnological potential. Appl. Soil Ecol., 2014, 82, 1–10.
  • Madavasamy, S. and Panneerselvam, A., Isolation, identification of fungi from Avicennia marina Muthupet mangroves, Thiruvarur Dt. Asian J. Plant Sci. Res., 2012, 2, 452–459.
  • Dufossé, L., Fouillaud, M., Caro, Y., Mapari, S. A. S. and Sutthiwong, N., Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol., 2014, 26, 56–61.
  • Celestino, J. D. R., de-Carvalho, L. E., Lima, M. D. P., Lima, A. M., Ogusku, M. M. and de-Souza, J. V. B., Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem., 2014, 49, 569–575.
  • Gerngross, T. U., Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nature Biotechnol., 2004, 22, 1409–1414.
  • Ghorai, S., Banik, S. P. P., Verma, D., Chowdhury, S., Mukherjee, S. and Khowala, S., Fungal biotechnology in food and feed processing. Food Res. Int., 2009, 42, 577–587.
  • Nwankwegu, A. S. and Onwosi, C. O., Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ. Technol. Innov., 2017, 7, 1–11.
  • Cerniglia, C. E. and Sutherland, J. B., Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and nonligninolytic fungi. In Fungi in Bioremediation (ed. Gadd, G. M.), Cambridge University Press, UK, 2001, pp. 136–187.
  • Gupta, N., Bihari, K. M. and Sengupta, I., Diversity of arbuscular mycorrhizal fungi in different salinity of mangrove ecosystem of Odisha, India. Adv. Plants Agric. Res., 2016, 3, 1–5.
  • Sadhana, B., Arbuscular mycorrhizal fungal diversity in coastal region of Manapaadu near Tiruchendur, Tamil Nadu. Int. J. Pure Appl. Biosci., 2015, 3, 226–236.
  • Séne, S. et al., Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles). Mycorrhiza, 2015, 25, 547–559.
  • Tian, X. L., Cao, L. X., Tan, H. M., Zeng, Q. G., Jia, Y. Y., Han, W. Q. and Zhou, S. N., Study of the communities of endophytic fungi and endophytic actinomycetesfrom rice and their antipathogenic activities in vitro. World J. Microbiol. Biotechnol., 2004, 20, 303–309.
  • Wu, B., Tian, J., Bai, C., Xiang, M., Sun, J. and Liu, X., The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. ISME J., 2013, 7, 1299–1309.
  • Gil, S. V., Pastor, S. and March, G. J., Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol. Res., 2009, 164, 196–205.
  • Gazis, R. and Chaverri, P., Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol., 2010, 3, 240–254.
  • Torres, S. M., Tadych Jr, M., White, J. M. and Bills, G. F., Isolation and identification of fungal endophytes. In Prospects and Applications for Plant-Associated Microbes: A Laboratory Manual Part B: Fungi (eds Pirttillä, A. M. and Sorvari, S.), BBi, Finland, 2011, pp. 153–164.
  • Kjer, J., Debbab, A., Aly, A. H. and Proksch, P., Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protoc., 2010, 5, 479–490.
  • Lu, Y., Chen, C., Chen, H., Zhang, J. and Chen, W., Isolation and identification of endophytic fungi from Actinidia macrosperma and investigation of their bioactivities. Evid.-Based Complement. Altern. Med., 2012, 2012, 1–8.
  • Guo, L. D., Hyde, K. D. and Liew, E. C. W., Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol., 2000, 147, 617–630.
  • Chaverri, P., Gazis, R. O. and Samuels, G. J., Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia, 2011, 103, 139–151.
  • Gilna, V. V. and Khaleel, K. M., Diversity of fungi in mangrove ecosystem. J. Exp. Sci., 2011, 2, 47–48.
  • Choi, Y.-W., Hyde, K. D. and Ho, W. W. H., Single spore isolation of fungi. Fungal Divers., 1999, 3, 29–38.
  • Nayak, S. S., Gonsalves, V. and Nazareth, S. W., Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa – India. Indian J. Mar. Sci., 2012, 41, 164–172.
  • Selvakumar, V., Panneerselvam, A., Vijayakumar, N., Savery, M. and Thajuddin, N., Diversity of endophytic and rhizosphere soil fungi of Avicennia marina in Maravakadu mangrove forest. IOSR J. Pharm. Biol. Sci., 2014, 9, 24–28.
  • Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T. and Samuels, G. J., Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia, 2015, 107, 558–590.
  • Kutateladze, L. Y., Zakariashvili, N. G., Jobava, M. D., Burduli, T. A. and Sadunishvili, T. A., Microscopic fungi spread in different types of soils in Western Georgia. Ann. Agrar. Sci., 2016, 14, 227–232.
  • Yang, H., Lü, G., Jiang, H., Shi, D. and Liu, Z., Diversity and distribution of soil micro-fungi along an elevation gradient on the north slope of Changbai Mountain. J. For. Res., 2017, 28, 831– 839.
  • de Paula, M. B. P., Speranza, P., Ohara, A., da Silva, É. B., de Angelis, D. A. and Macedo, G. A., Fungi from Brazilian Savannah and Atlantic rainforest show high antibacterial and antifungal activity. Biocatal. Agric. Biotechnol., 2017, 10, 1–8.
  • Lihan, S., Lin, C. S., Ahmad, I., Sinang, F. M., Hua, N. K. and Sallehin, A. A., Antimicrobial producing microbes isolated from soil samples collected from Nanga Merit Forest in Sarawak, Malaysian Borneo. Eur. J. Exp. Biol., 2014, 4, 494–501.
  • Banakar, S. P., Thippeswamy, B., Thirumalesh, B. V. and Naveenkumar, K. J., Diversity of soil fungi in dry deciduous forest of Bhadra Wildlife Sanctuary, Western Ghats of southern India. J. For. Res., 2012, 23, 631–640.
  • Banakar, S. P. and Thippeswamy, B., Isolation and partial purification of fungal ligninolytic enzymes from the forest soil fungi isolated from Bhadra Wildlife Sanctuary. Front. Biol., 2014, 9, 291–299.
  • Jalajuddin, M., Studies of microbial abundances in mangrove habitats along the Karachi coast. Pak. J. Mar. Sci., 2000, 3, 107– 113.
  • Li, J. L., Sun, X., Chen, L. and Guo, L. D., Community structure of endophytic fungi of four mangrove species in southern China. Mycology, 2016, 7, 180–190.
  • Azevedo, E., Caeiro, M. F., Rebelo, R. and Barata, M., Biodiversity and characterization of marine mycota from Portuguese waters. Anim. Biodivers. Conserv., 2011, 34, 205–215.
  • Morrison-Gardiner, S., Dominant fungi from Australian coral reefs. Fungal Divers., 2002, 9, 105–121.
  • Hong, J., Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar. Drugs, 2015, 13, 4137–4155.
  • Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. and Yu, L. Y., Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep., 2015, 5, 14524.
  • Andreakis, N. et al., Diversity of marine-derived fungal cultures exposed by DNA barcodes: the algorithm matters. PLoS ONE, 2015, 10, e0136130; doi:10.1371/journal.pone.0136130.
  • Hong, J. H., Jang, S., Heo, Y. M., Min, M., Lee, H., Lee, Y. M., Lee, H. and Kim, J. J., Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar. Drugs, 2015, 13, 4137–4155.
  • Bonugli-Santos, R. C. et al., Marine-derived fungi: diversity of enzymes and biotechnological applications. Front. Microbiol., 2015, 6, 1–15.
  • Beena, K. R., Raviraja, N. S., Arun, A. B. and Sridhar, K. R., Diversity of arbuscular mycorrhizal fungi on the coastal sand dunes of the west coast of India. Curr. Sci., 2000, 79, 1459– 1466.
  • Parveen, S., Lanjewar, S., Sharma, K. and Kutti, U., Isolation of fungi from the surface water of river. J. Exp. Sci., 2011, 2, 58–59.
  • Alwakeel, S. S., Molecular identification of fungi isolated from coastal regions of Red Sea, Jeddah, Saudi Arabia. J. Assoc. Arab Univ. Basic Appl. Sci., 2017, 24, 115–119.
  • Tsuji, M., A catalog of fungi recorded from the vicinity of Syowa Station. Mycoscience, 2018, 59, 319–324.
  • Brundrett, M. C., Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In Microbial Root Endophytes (eds Schulz, B. J. E., Boyle, C. J. C. and Sieber, T. N.), SpringerVerlag, Berlin, 2006, pp. 281–298.
  • Dighton, J., Fungi in Ecosystem Processes, CRC Press, Boca Raton, FL, USA, 2003, p. 437.
  • Balestrini, R. and Lumini, E., Focus on mycorrhizal symbioses. Appl. Soil Ecol., 2018, 123, 299–304.
  • Johnson, N. C. and Gehring, C. A., Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In The Rhizosphere (eds Cardon, Z. G. and Whitbeck, J. L.), Elsevier, Cambridge, USA, 2007, pp. 73–100.
  • Jia, S., Nakano, T., Hattori, M. and Nara, K., Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. Mycorrhiza, 2017, 27, 733–745.
  • Roy, M., Watthana, S., Stier, A., Richard, F., Vessabutr, S. and Selosse, M. A., Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol., 2009, 7, 51.
  • de Souza, T. A. F. and Freitas, H., Arbuscular mycorrhizal fungal community assembly in the Brazilian tropical seasonal dry forest. Ecol. Process., 2017, 6, 2–10.
  • Rodríguez-Morelos, V. H., Soto-Estrada, A., Pérez-Moreno, J., Franco-Ramírez, A. and Díaz-Rivera, P., Arbuscular mycorrhizal fungi associated with the rhizosphere of seedlings and mature trees of Swietenia macrophylla (Magnoliophyta: Meliaceae) in Los Tuxtlas, Veracruz, Mexico. Rev. Chil. Hist. Nat., 2014, 87, 1– 10.
  • Lang, C., Seven, J. and Polle, A., Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza, 2011, 21, 297–308.
  • D’Souza, J. and Rodrigues, B. F., Seasonal diversity of arbuscular mycorrhizal fungi in mangroves of Goa, India. Int. J. Biodivers., 2013, 2013, 1–7.
  • Brundrett, M. C., Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In Biogeography of Mycorrhizal Symbiosis (ed. Tedersoo, L.), Springer, Cham, Switzerland, 2017, pp. 533–556.
  • Greipsson, S. and El-Mayas, H., Arbuscular mycorrhizae of Leymus arenarius on coastal sands and reclamation sites in Iceland and response to inoculation. Restor. Ecol., 2000, 8, 144– 150.
  • Johansen, R. B., Vestberg, M., Burns, B. R., Park, D., Hooker, J. E. and Johnston, P. R., A coastal sand dune in New Zealand reveals high arbuscular mycorrhizal fungal diversity. Symbiosis, 2015, 66, 111–121.
  • Moeller, H. V., Peay, K. G. and Fukami, T., Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol. Ecol., 2014, 87, 797–806.
  • White, J. F., Tadych, M., Torres, M. S., Bergen, M. S., Irizarry, I., Chen, Q. and Zambell, C., Endophytic microbes, evolution and diversification of. In Encyclopedia of Evolutionary Biology (ed. Kliman, R. M.), Elsevier, USA, 2016, pp. 505–510.
  • Sun, X. and Guo, L. D., Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 2012, 3, 65–76.
  • Sanz-Ros, A. V., Müller, M. M., San Martín, R. and Diez, J. J., Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in northern Spain. Fungal Biol., 2015, 119, 870–883.
  • Rojas-Jimenez, K., Hernandez, M., Blanco, J., Vargas, L. D., Acosta-Vargas, L. G. and Tamayo, G., Richness of cultivable endophytic fungi along an altitudinal gradient in wet forests of Costa Rica. Fungal Ecol., 2016, 20, 124–131.
  • Wu, Z., Yan, S., Zhou, S., Chen, S. and Yan, S., Diversity of endophytic mycobiota in Fortunearia sinensis. Acta Ecol. Sin., 2014, 34, 160–164.
  • Reddy, M. S., Murali, T. S., Suryanarayanan, T. S., Rajulu, M. B. G. and Thirunavukkarasu, N., Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern India. Fungal Ecol., 2016, 24, 70–75.
  • Mejía, L. C. et al., Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol. Control, 2008, 46, 4–14.
  • Taylor, H. S., Hydrocarbon chemistry. Ind. Eng. Chem., 1953, 45, 1440–1441.
  • Krasner, R. I. and Shors, T., The Microbial Challenge: A Public Health Perspective, Jones & Bartlett Learning, Burlington, NJ, USA, 2014, p. 550.
  • Simister, R. L., Poutasse, C. M., Thurston, A. M., Reeve, J. L., Baker, M. C. and White, H. K., Degradation of oil by fungi isolated from Gulf of Mexico beaches. Mar. Pollut. Bull., 2015, 100, 327–333.
  • Bovio, E. et al., The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci. Total Environ., 2017, 576, 310–318.
  • Elshafie, A., AlKindi, A. Y., Al-Busaidi, S., Bakheit, C. and Albahry, S. N., Biodegradation of crude oil and n-alkanes by fungi isolated from Oman. Mar. Pollut. Bull., 2007, 54, 1692–1696.
  • Miranda, R. C., Souza, C. S., Gomes, E. B., Lovaglio, R. B., Lopes, C. E. and Sousa, M. F. V., Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the State of Pernambuco – Brazil. Braz. Arch. Biol. Technol., 2007, 50, 147– 152.
  • Ahmad, S. A., Sadiya, S. and Alhaji, S. I., Biodegradation of used engine oil by fungi isolated from mechanic workshop soils in Sokoto Metropolis, Nigeria. Sky J. Soil Sci. Environ. Manage., 2015, 4, 64–69.
  • Saravanan, R. and Sivakumar, T., Biodiversity and biodegradation potentials of fungi isolated from marine systems of east coast of Tamil Nadu, India. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2, 192–201.
  • Mohsenzadeh, F., Chehregani Rad, A. and Akbari, M., Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran. J. Environ. Health Sci. Eng., 2012, 9, 26.
  • Adekunle, A. A. and Adeniyi, A. O., Biodegradation of petroleum oil by fungi isolated from Treculia africana (Decne) seeds in Nigeria. Afr. J. Environ. Sci. Technol., 2015, 9, 126–135.
  • Aranda, E., Godoy, P., Reina, R., Badia-Fabregat, M., Rosell, M., Marco-Urrea, E. and Garcia-Romera, I., Isolation of Ascomycota fungi with capability to transform PAHs: insights into the biodegradation mechanisms of Penicillium oxalicum. Int. Biodeterior. Biodegrad., 2017, 122, 141–150.
  • Shinde, V. L., Meena, R. M. and Shenoy, B. D., Phylogenetic characterization of culturable bacteria and fungi associated with tarballs from Betul beach, Goa, India. Mar. Pollut. Bull., 2018, 128, 593–600.
  • Farag, S. and Soliman, N. A., Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Braz. Arch. Biol. Technol., 2011, 54, 821–830.
  • Gargouri, B., Mhiri, N., Karray, F., Aloui, F. and Sayadi, S., Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed Res. Int., 2015, 2015, 1–7.

Abstract Views: 304

PDF Views: 91




  • Isolation of Fungi from Various Habitats and their Possible Bioremediation

Abstract Views: 304  |  PDF Views: 91

Authors

Farazimah Yakop
Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Brunei Darussalam
Hussein Taha
Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Brunei Darussalam
Pooja Shivanand
Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Brunei Darussalam

Abstract


Fungi are the most diverse and adaptable group of living organisms. The literature highlights that colonization density and fungal diversity can be affected by factors such as salinity, pH, temperature, altitude and availability of nutrients. The present article discusses isolation and characterization of fungi from different ecosystems like forests, mangroves and coastal areas. Fungal interaction with ecosystems is reported to play an important role in the biodiversity, survivability, propagation and productivity of plants. Fungi have established a beneficial association with numerous hosts and have the capability to degrade environmental pollutants such as hydrocarbons and by-products. Hence, fungi and fungal products like extracellular hydrolytic and lignin-degrading enzymes, and surfactants offer eco-friendly and cost-effective strategies to address pollution, especially with respect to bioremediation of oil spills and polyaromatic hydrocarbons.

Keywords


Bioremediation, Fungi, Habitats, Hydrocarbon Degradation.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi5%2F733-740