Open Access Open Access  Restricted Access Subscription Access

Carbon Storage Potential Of Mangroves–Are we Missing the Boat?


Affiliations
1 CSIR-National Botanical Research Institute, Rana Pratap Marg, Post Box No. 436, Lucknow 226 001, India
2 Centre for Advanced Studies in Marine Biology, Annamalai University, Parengipettai 608 502,, India
3 Rain Forest Research Institute, Jorhat 785 010, India
4 Department of Ocean Studies and Marine Biology, Pondicherry University, Brookshabad Campus, Port Blair 744 112, India
 

Increasing soil carbon stocks and protecting carbon-rich soils are crucial for achieving the Paris climate targets. Mangrove forests are the potential carbon sinks for mitigating the growing greenhouse gas emissions due to their highest carbon storage capacity per unit area compared to terrestrial forests. Furthermore, restricted global distribution of mangroves testifies their role in climate change mitigation as most effective at the national level rather than on a global scale. Nevertheless, lack of reliable estimates, insufficient data, discrepancy in the available data, increasing degradation rates and failure of conservation endeavours signify that we are missing the carbon storage potential of mangrove soil. So, here we emphasize the imperative need of country-wise site-specific precise estimates and an understanding of the spatial distribution of mangrove soil carbon stocks to recognize the actual climate mitigation potential of the mangroves as well as strengthen the conservation measures for the sustainability of mangroves.
User
Notifications
Font Size

  • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M. and Kanninen, M., Nature Geosci., 2011, 4, 293–297.
  • Alongi, D. M. (ed.), In Blue Carbon, Springer, Switzerland, 2018, pp. 23–36.
  • Twilley, R. R., Chen, R. H. and Hargis, T., Water Air Soil Pollut., 1992, 64, 265– 288.
  • Alongi, D. M., Annu. Rev. Mar. Sci., 2014, 6, 195–219.
  • Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z. and Santos, I. R., J. Geophys. Res. Biogeosci., 2016, 121, 2600–2609.
  • Atwood, T. B. et al., Nature Climate Change, 2017, 7, 523–528.
  • IPCC, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), Special Report, Cambridge University Press, Cambridge, UK, 2013, p. 594.
  • Alongi, D. M., Carbon Manage, 2012, 3, 313–322.
  • Kauffman, J. B. and Bhomia, R. K., PLoS ONE, 2017, 12(11), e0187749.
  • Walcker, R. et al., Global Change Biol., 2018, 28(6), 2325–2338.
  • Murdiyarso, D. et al., Nature Climate Change, 2015, 5, 8–11.
  • Jardine, S. L. and Siikamäki, J. V., Environ. Res. Lett., 2014, 9(10), 104013; doi:10.1088/1748-9326/9/10/104013.
  • Sanderman, J. et al., Environ. Res. Lett., 2018, 13, 055002.
  • Siikamaki, J., Sanchirico, J. N. and Jardine, S. L., Proc. Natl. Acad. Sci. USA, 2012, 109, 14369–14374.
  • Friess, D. A. and Webb, E. L., Global Ecol. Biogeogr., 2014, 23, 715–725.
  • Rovai, A. S. et al., Nature Climate Change, 2018, 8, 534–538.
  • Twilley, R. R., Rovai, R. A. and Riul, P., Front. Ecol. Environ., 2018, doi: 10.1002/fee.1937.
  • Adame, M. F., Santini, N. S., Tovilla, C., Vázquez-Lule, A., Castro, L. and Guevara, M., Biogeosciences, 2015, 12(12), 3805–3818.
  • Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A. and Donato, D. C., Wetlands, 2011, 31(2), 343–352.
  • Weiss, C., Weiss, J., Boy, J., Iskandar, I., Mikutta, R. and Guggenberger, G., Ecol. Evol., 2016, 6(14), 5043–5056.
  • Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J. and Megonigal, J. P., Ecol. Appl., 2017, 27(3), 859–874.
  • Perez, A., Libardoni, B. G. and Sanders, C. J., Biol. Lett., 2018, 14, 20180237.
  • Hutchison, J., Manica, A., Swetnam, R., Balmford, A. and Spalding, M., Conserv. Lett., 2014, 7(3), 233–240.
  • Rovai, A. S. et al., Global Ecol. Biogeogr., 2016, 25(3), 286–298.
  • Breithaupt, J. L., Smoak, J. M., Smith, T. J. and Sanders, C. J., J. Geophys. Res. Biogeosci., 2014, 119, 2032–2048.
  • Lovelock, C. E., Feller, I. C., Reef, R. and Ruess, R. W., Plant Soil, 2014, 379, 135–148.
  • Scharler, U. M. et al., Oecologia, 2015, 179(3), 863–876.
  • Xiong, Y., Liao, B., Proffitt, E. D., Guan, W., Sun, Y., Wang, F. and Liu, X., Sci. Total Environ., 2018, 619–620, 1226–1235.
  • Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. and Eyre, B. D., Sci. Adv., 2018, 4, eaao4985.
  • Taillardat, P., Friess, D. A. and Lupascu, M., Biol. Lett., 2018, 14, 20180251.
  • Rumpel, C., Amiraslani, F., Koutika, L. S., Smith, P., Whitehead, D. and Wollenberg, E., Science, 2018, 564, 32– 34.
  • Hamilton, S. and Casey, D., Global Ecol. Biogeogr., 2016, 25, 729–738.
  • Maiti, S. and Chowdhury, A., J. Environ. Prot., 2013, 4(12), 1428–1434.
  • Chowdhury, R. R., Uchida, E., Chen, L., Osorio, V. and Yoder, L., In Mangrove Ecosystems: A Global Biogeographic Perspective (eds Rivera-Monroy, V. H. et al.), 2017, pp. 275–300.
  • Carugati, L., Gatto, B., Rastelli, E., Martire, M. L., Coral, C., Greco. S. and Danovaro, R., Sci. Rep., 2018, 8, 13298.
  • Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S. and Ball, M. C., Sci. Rep., 2017, 7, 1680.
  • Duke, N. C. et al., Mar. Freshwater Res., 2017, doi:10.1071/MF16322.
  • Harris, T. et al., NESP Earth Systems and Climate Change Hub, Report No. 2, Australia, 2017.
  • Harris, R. M. B. et al., Nature Climate Change, 2018, 8, 579–587.
  • Sippo, J. Z. et al., Estuarine, Coastal Shelf Sci., 2018; doi:10.1016/j.ecss.2018.10.11.
  • Lewis, R. R., Milbrandt, E. C., Brown, B., Krauss, K. W., Rovai, A. S., Beever, J. W. and Flynn, L. L., Mar. Pollut. Bull., 2016, 109, 764–771.
  • Romañacha, S. S., Deangelis, D. L., Koh, H. L., Li, Y., Teh, S. Y., Barizan, R. S. R. and Zhai, L., Ocean Coastal Manage., 2018, 154, 72–82.
  • Duke, N. C. et al., Science, 2007, 317(5834), 41–42.
  • Kennedy, H. et al., In Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.), Intergovernmental Panel on Climate Change, Gland, Switzerland, 2014.

Abstract Views: 434

PDF Views: 131




  • Carbon Storage Potential Of Mangroves–Are we Missing the Boat?

Abstract Views: 434  |  PDF Views: 131

Authors

P. Ragavan
CSIR-National Botanical Research Institute, Rana Pratap Marg, Post Box No. 436, Lucknow 226 001, India
K. Sivakumar
Centre for Advanced Studies in Marine Biology, Annamalai University, Parengipettai 608 502,, India
R. S. C. Jayaraj
Rain Forest Research Institute, Jorhat 785 010, India
P. M. Mohan
Department of Ocean Studies and Marine Biology, Pondicherry University, Brookshabad Campus, Port Blair 744 112, India
T. S. Rana
CSIR-National Botanical Research Institute, Rana Pratap Marg, Post Box No. 436, Lucknow 226 001, India

Abstract


Increasing soil carbon stocks and protecting carbon-rich soils are crucial for achieving the Paris climate targets. Mangrove forests are the potential carbon sinks for mitigating the growing greenhouse gas emissions due to their highest carbon storage capacity per unit area compared to terrestrial forests. Furthermore, restricted global distribution of mangroves testifies their role in climate change mitigation as most effective at the national level rather than on a global scale. Nevertheless, lack of reliable estimates, insufficient data, discrepancy in the available data, increasing degradation rates and failure of conservation endeavours signify that we are missing the carbon storage potential of mangrove soil. So, here we emphasize the imperative need of country-wise site-specific precise estimates and an understanding of the spatial distribution of mangrove soil carbon stocks to recognize the actual climate mitigation potential of the mangroves as well as strengthen the conservation measures for the sustainability of mangroves.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi6%2F889-891