Open Access
Subscription Access
Large Losses in Glacier Area and Water Availability by the End of Twenty-First Century under High Emission Scenario, Satluj Basin, Himalaya
Glaciers in the Satluj river basin are likely to lose 53% and 81% of area by the end of the century, if climate change followed RCP 8.5 scenario of CNRMCM5 and GFDL-CM3 models respectively. The large variability in area loss can be due to difference in temperature and precipitation projections. Presently, Satluj basin has approximately 2000 glaciers, 1426 sq. km glacier area and 62.3 Gt glacier stored water. The current mean specific mass balance is –0.40 m.w.e. a–1. This will change to –0.42 and – 1.1 m.w.e. a–1 by 2090, if climate data of CNRM-CM5 and GFDL-CM3 are used respectively. We have used an extreme scenario of GFDL-CM3 model to assess the changes in the contribution of glacier melt to the Bhakra reservoir. Mass balance model suggests that glaciers are contributing 2 km3 a–1 out of 14 km3 of water. This will increase to 2.2 km3 a–1 by 2050, and then reduce to 1.5 km3 a–1 by the end of the century. In addition, loss in glacier area by the end of century, will also increase the vulnerability of mountain communities, suggesting need for better adaptation and water management practices.
Keywords
Climate Change, Glacier, Glacier Melt Runoff, Himalaya, Mass Balance, Satluj Basin, Water Availability.
User
Font Size
Information
- Food and Agricultural Organization, Irrigation in Southern and Eastern Asia in figures AQUASTAT Survey-2011, 2012. FAO Water Report no. 37, 2012, pp. 129–138.
- Immerzeel, W. W., van Beek, L. P. H., Marc, F. P. and Bierkens, M. F. P., Climate change will affect the Asian water towers. Science, 2010, 328, 1382–1385.
- Bhakra Beas Management Board (BBMB) Report, 2016; http://bbmb.gov.in/writereaddata/Portal/Reports/15_1_BBMB-ANNUAL-REPORT-2015-16-E.pdf.
- Dharmadhikary, S., Unravelling Bhakra. Econ. Polit. Wkly., 2005, 41(3), 1–10.
- Pal, I., Lall, U., Robertson, A. W., Cane, M. A. and Bansal, R., Predictability of Western Himalayan river flow: melt seasonal inflow into Bhakra Reservoir in northern India. Hydrol. Earth Syst. Sci., 2013, 17(6), 2131–2146.
- SANDRP, 2013; https://sandrp.files.wordpress.com/2018/03/hep_performance_in_sutlej_river_basin_june2013.pdf (accessed on 29 May 2018).
- Singh, D., Gupta, R. D. and Jain, S. K., Study of long-term trend in river discharge of Sutlej river (N–W Himalayan region 2014). Geogr. Environ. Sustain., 2014, 7(3), 87–96.
- Singh, P. and Jain, S. K., Snow and glacier melt in the Satluj River at Bhakra Dam in the Western Himalayan region. Hydrol. Sci. J., 2002, 47(1), 93–106.
- Singh, P. and Jain, S. K., Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yield. Hydrol. Sci. J., 2003, 48(2), 257–276.
- Oerlemans, J., Quantifying global warming from the retreat of glaciers. Science, 1994, 264(5156), 243–245.
- Kulkarni, A. V., Rathore, B. P., Mahajan, S. and Mathur, P., Alarming retreat of Parbati glacier, Beas basin, Himachal Pradesh. Curr. Sci., 2005, 88(11), 1844–1850.
- Chaturvedi, R. K., Kulkarni, A. V., Karyakarte, Y. and Bala, G., Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change, 2014, 123(2), 315–328.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Ann. Glaciol., 2017, 55(75), 99–109.
- Dimri, A. P. and Dash, S. K., Wintertime climatic trends in the western Himalaya. Climatic Change, 2012, 111(3), 775–800.
- Allen et al., IPCC, 2014: Annex II: Glossary (eds Mach, K. J., Planton, S. and von Stechow, C.). In Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. K. and Meyer, L. A.,), IPCC, Geneva, Switzerland, 2014, pp. 117–130.
- Negi, H. S., Kanda, N., Shekha, M. S. and Ganju, A., Recent wintertime climatic variability over the North West Himalayan cryosphere. Curr. Sci., 2018, 114(4), 760–770.
- Bolch, T. et al., The state and fate of Himalayan glaciers. Science, 2012, 336(6079), 310–314.
- Kulkarni, A. V. and Karyakarte, Y., Observed changes in Himalaya glaciers. Curr. Sci., 2014, 106(2), 237–244.
- Kääb, A., Chiarle, M., Raup, B. and Schneider, C., Climate change impacts on mountain glaciers and permafrost. Global Planet. Change, 2007, 56(1), 7–9.
- Cogley, J. C., The future of Asia’s glaciers. Nature, 2017, 549, 166–167.
- Gardelle, J., Berthier, E., Arnaud, Y. and Kaab, A., Region-wide glacier mass balances over the Pamir Karakoram-Himalaya during 1999–2011. Cryosphere, 2013, 7(6), 1885–1886.
- Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Linda, A. and Singh, V. B., Reconstruction of the annual mass balance of Chhota Shigri Glacier (Western Himalaya, India) since 1969. Ann. Glaciol., 2014, 55, 69–80.
- Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Favier, V., Mandal, A. and Pottakka, G., Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere, 2014, 8, 2195–2217.
- Singh, M., Mishra, V. D., Thakur, N. K., Kulkarni, A. V. and Singh, M., Impact of climatic parameters on statistical stream flow sensitivity analysis for hydro power. J. Indian Soc. Remote Sens., 2009, 37(4), 601–614.
- Kaser, G., Großhauser, M. and Marzeion, B., Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci., 2010, 107(47), 20223–20227.
- Moors, et al., Adaptation to changing water resources in the Ganges basin, northern India. Environ. Sci. Policy, 2011, 14(7), 758–769.
- Gantayat, P., Kulkarni, A. V. and Srinivasan, J., Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India. J. Glaciol., 2014, 60(220), 277–282.
- Bahr, D. B., Meier, M. F. and Peckham, S. D., The physical basis of glacier volume–area scaling. J. Geophys. Res., 1997, 102, 20355–20362.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., Estimation of glacier mass balance on a basin scale: an approach based on satellitederived snowlines and a temperature index model. Curr. Sci., 2016, 111(12), 1977–1989.
- Marzeion, B., Jarosch, A. H. and Hofer, M., Past and future sealevel change from the surface mass balance of glaciers. Cryosphere, 2012, 6, 1295–1322.
- Cuffey, K. and Paterson, W. S. B., The flow of ice masses. In. The Physics of Glaciers, Elsevier, Oxford, UK, 2010, pp. 285–398.
- Leprince, S., Barbot, S., Ayoub, F. and Avouac, J.-P., Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens., 2007, 45(6), 1529–1558.
- Titarov, P. S., Evaluation of CARTOSAT 1 geometric potential. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Vol. XXXVII, Part B1, Beijing, 2008.
- Nuth, C. and Kääb, A., Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 2011, 5(1), 271–290.
- Pieczonka, T., Bolch, T., Junfeng, W. and Shiyin, L., Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ., 2013, 130, 233–244.
- Kääb, A., Berthier, E., Nuth, C., Gardelle, J. and Arnaud, Y., Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 2012, 488, 495–498.
- Pratibha, S. and Kulkarni, A. V., Decadal change in supraglacial debris cover in Baspa basin, Western Himalaya. Curr. Sci., 2018, 114(4), 792–799.
- Huss, M., Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 2013, 7, 877– 887.
- Pieczonka, T. and Bolch, T., Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using 861 Hexagon KH-9 imagery. Global Planet. Change, 2013, 128, 862.
- Taylor, K. E., Stouffer, R. J. and Meehl, G. A., An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 2012, 93, 485–498; doi:10.1175/BAMS-D-11-00094.1.
- Palazzi, E., von Hardenberg, J. and Terzago, S., Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim. Dynam., 2015, 45, 21–45.
- Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D. and Matonse, A. H., Examination of change factor methodologies for climate change impact assessment. Water Resour. Res., 2013, 47(3), 1–10.
- Johannesson, T., Raymond, C. and Waddington, E., Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 1989, 35, 355–369.
- Huss, M. and Hock, R., Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change, 2018, 8(2), 135.
- Maanya, U. S., Kulkarni, A. V., Tiwari, A., Bhar, E. D. and Srinivasan, J., Identification of potential glacial lake sites and mapping maximum extent of existing glacier lakes in Drang Drung and Samudra Tapu glaciers, Indian Himalaya. Curr. Sci., 2016, 111(3), 553–560.
- Pfeffer, W. T. et al., The Randolph glacier inventory: a globally complete inventory of glaciers. J. Glaciol., 2014, 60(221), 537– 552.
- Taylor, J. R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, California, USA, 1997, 2nd edn.
- Gardner, A. S. et al., Reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 2013, 340(6134), 852– 857.
- Zhao, L., Ding, R. and Moore, J. C., The high Mountain Asia glacier contribution to sea-level rise from 2000 to 2050. Ann. Glaciol., 2016, 57(71), 223–231.
- Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. and Bierkens, M. F. P., Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change, 2014, 4, 587– 592.
Abstract Views: 356
PDF Views: 134