Open Access Open Access  Restricted Access Subscription Access

Regional Liquefaction Susceptibility Mapping in the Himalayas using Geospatial Data and AHP Technique


Affiliations
1 Geosciences Group, National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
2 Department of Geophysics, College of Science and Technology, Andhra University, Visakhapatnam 530 003, India
 

Liquefaction susceptibility (LS) assessment is a necessary input for seismic zonation studies. LS can be done using geospatial models by integration of thematic layers. In this study, we have used analytical hierarchy process for integration of thematic layers (e.g. water table depth, peak horizontal acceleration, etc.) to generate a regional LS map for Uttarakhand and Himachal Pradesh in India. The final map was classified as liquefaction-likely, liquefaction-possible and liquefaction-not-likely zones. Results show Doon valley and Himalayan foothills are more prone to LS than the higher Himalayas.

Keywords

Analytical Hierarchy Process, Earthquakes, Geospatial Data, Liquefaction Susceptibility.
User
Notifications
Font Size

  • Youd, T. L., Liquefaction, flow and associated ground failure. Circular 688, US Geological Survey, 1973.
  • Sonmez, H. and Gokceoglu, C., A liquefaction severity index suggested for engineering practice. Environ. Geol., 2005, 48(1), 81–91.
  • Seed, H. B. and Idriss, I. M., Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. Div., ASCE, 1971, 97(9), 1249–1273.
  • Iwasaki, T., Tokida, K., Tatsuoka F., Watanabe, S., Yasuda, S. and Sato, H., Microzonation for soil liquefaction potential using simplified methods. In Proceedings of the third International Earthquake Microzonation Conference, 1982, vol. 3, pp. 1319– 1330.
  • Seed, H. B., Tokimatsu, K., Harder Jr, L. F. and Chung, R., Influence of SPT procedures in soil liquefaction resistance evaluations. J. Geotech. Eng. Div., 1985, 111(12), 1425–1445.
  • Youd, T. L. and Idriss, I. M., Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng., 2001, 127(4), 297–313.
  • Youd, T. L. et al., Liquefaction resistance of soils: summary report from the 1996 NCEER 14 and 1998 NCEER/NSF workshop on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng., 2001, 127(10), 817–833.
  • Youd, T. L. and Perkins, D. M., Mapping liquefaction induced ground failure potential. J. Geotech. Eng. Div., 1978, 104(4), 433– 446.
  • Chung, J. W., Rogers, J. D., P. E. and ASCE, M., Simplified method for spatial evaluation of liquefaction potential in the St. Louis Area. J. Geotech. Geoenviron. Eng., 2011, 137, 505–515; doi:10.1061/(ASCE) GT.1943-5606.0000450.
  • Kramer, S. L., Geotechnical Earthquake Engineering, Prentice Hall, Upper Saddle River, NJ, USA, 1996.
  • Tuttle, M., Chester, J., Lafferty, R., Dyer-Williams, K. and Cande, B., Paleoseismology study northwest of the New Madrid Seismic Zone. US Nuclear Regulatory Commission, 1999.
  • Marcuson III, W. F, Definition of terms related to liquefaction. J. Geotech. Eng. Div., ASCE, 1978, 104(9), 1197–1200.
  • Wakamatsu, K., Evaluation of liquefaction susceptibility based on detailed geomorphological classification. In Proceedings of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1992, vol. B, pp. 1443–1444.
  • Torres, R. C., Paladio, M. L., Punongbayan, R. S. and Alonso, R. A., Liquefaction inventory and mapping in the Philippines. In National Disaster Mitigation in the Philippines. Proceedings of the National Conference on Natural Disaster Mitigation, DOSTPHIVOLCS, Philippine, 1994, pp. 45–60.
  • Akin, K. M., Topal, T. and Kramer, S. L., A newly developed seismic microzonation model of Erbaa (Tokat, Turkey) located on seismically active eastern segment of the North Anatolian Fault Zone (NAFZ). Nat. Hazards, 2013, 65, 1411–1442; doi:10.1007/ s11069-012-0420-1.
  • Taskin, B., Sezen, A. and Tugsal, U. M., The aftermath of 2011 Van earthquakes: evaluation of strong motion, geotechnical and structural issues. Bull. Earthq. Eng., 2013, 11, 285.
  • Holzer, T. L., Noce, T. E. and Bennett, M. J., Scenario liquefaction hazard maps of Santa Clara Valley, northern California. Bull. Seismol. Soc. Am., 2009, 99, 367–381.
  • Brankman, C. M., amd Baise, L. G., Liquefaction susceptibility mapping in Boston, Massachusetts. Environ. Eng. Geosci., 2008, 14, 1–16.
  • Zhu, J., Baise, L. G. and Thompson, E. M., An updated geospatial liquefaction model for global application. Bull. Seismol. Soc. Am., 2017, 107(3), 1365–1385; doi:10.1785/0120160198.
  • Baise, L. G., Daley, D., Zhu, J., Thompson, E. M. and Knudsen, K., Geospatial liquefaction hazard model for Kobe, Japan and Christchurch, New Zealand. Seismol. Res. Lett., 2012, 83, 458.
  • Ganapathy, G. P. and Rajawat, A. S., Evaluation of liquefaction potential hazard of Chennai City, India: using geological and geomorphological characteristics. Nat. Hazards, 2012, 64(2), 1717–1729.
  • Zhu, J., Daley, D., Baise, L. G., Thompson, E. M., Wald, D. J. and Knudsen, K. L., A geospatial liquefaction model for rapid response and loss estimation. Earthq. Spectra, 2015, 31, 1813– 1837.
  • Puri, N. and Jain, A., Preliminary investigation for screening of liquefiable areas in Haryana state, India. ISET J. Earthq. Technol., 2014, 51(1–4), 19–34.
  • Sekac, T., Jana, S. K., Pal, I. and Pal, D. K., A GIS based approach into delineating liquefaction susceptible zones through assessment of site–soil–geology – a case study of Madang and Morobe Province in Papua New Guinea (PNG). Int. J. Innov. Res. Sci., Eng. Technol., 2016, 3(8), 6616–6629.
  • Oldham, T. A., catalogue of Indian earthquakes from the earliest to the end of 1869. Mem. Geol. Surv. India, 1883, 19(1), 163–215.
  • Rajendran, C. P., Rajendran, K., Sanwal, J. and Sandiford, M., Archeological and historical database on the medieval earthquakes of the Central Himalaya: ambiguities and inferences. Seismol. Res. Lett., 2013, 84(6), 1098–1108.
  • Hough, S. E. and Bilham, R., Site response of the Ganges basin inferred from re-evaluated macroseismic observations from the 1897 Shillong, 1905 Kangra, and 1934 Nepal earthquakes. J. Earth Syst. Sci., 2008, 117(S2), 773–782.
  • Rajendran, C. P., John, B., Rajendran, K. and Sanwal, J., Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India. J. Seismol., 2016; doi:10.1007/s10950-016-9554-z.
  • Wadia, D. N., The Geology of India, Macmillan, New York, USA, 1957, 3rd edn., pp. 353, 383.
  • Gansser, A., Geology of the Himalayas, Interscience, New York, USA, 1964, p. 289.
  • Valdiya, K. S., Geology of the Kumaun Lesser Himalaya, The Himachal Press, Wadia Institute of Himalayan Geology, Dehradun, 1980, p. 219.
  • BIS IS 1893–2002 (Part 1): Indian standard criteria for earthquake resistant design of structures. Part 1 – general provisions and buildings. Bureau of Indian Standards, New Delhi, 2002.
  • Knudsen, K. and Bott, J., Geologic and geomorphic evaluation of liquefaction case histories for rapid hazard mapping. Seismol. Res. Lett., 2011, 82, 334.
  • Idriss, I. M. and Boulanger, R. W., Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn. Earthq. Eng., 2006, 26, 115–130.
  • Shankar, D. and Shubham, On the seismic hazard in Himachal Pradesh and Utarakhand States. Geoscience, 2018, 8(2), 21–31.
  • Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill International, New York, USA, 1980.
  • Obermeier, S. F., Use of liquefaction induced features for seismic analysis – an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of holocene Paleo-earthquakes. Eng. Geol., 1996, 44, 1–76.
  • Thakur, V. C., Active tectonics of Himalayan Frontal Thrust and seismic hazard to Ganga Plain. Curr. Sci., 2004, 86(11), 1554– 1560.
  • Mahajan, A. K. and Virdi, N. S., Macroseismic field generated by 29 March 1999 Chamoli earthquake and its seismotectonics. J. Asian Earth Sci., 2001, 19, 507–516.
  • Malik, J. N., Sahoo, A. K., Shah, A. A., Rawat, A. and Chaturved, A., Farthest recorded liquefaction around Jammu caused by 8 October 2005, Muzaffarabad earthquake of MW = 7.6. J. Geol. Soc. India, 2007, 69, 39–61.
  • Mahajan, A. K., Slob, S., Ranjan, R., Sporry, R., Champati Ray, P. K. and Van Westen, C. J., Seismic microzonation of Dehradun City using geophysical and geotechnical characteristics in the upper 30 m of soil column. J. Seismol., 2007, 11, 355–370; doi:10.1007/s10950-007-9055-1.
  • Mahajan, A. K., NEHRP soil classification and estimation of 1-D site effect of Dehradun fan deposits using shear wave velocity. Eng. Geol., 2009, 104, 232–240.
  • Mahajan, A. K., Thakur, V. C., Sharma, M. L. and Chauhan, M., Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India. Nat. Hazards, 2010, 53, 443–457; doi:10.1007/ s11069-009-9439-3.
  • Sathyaseelan, R., Mundepi, A. K. and Kumar, N., Quantifying seismic vulnerability, dynamical shear strain and liquefaction of the Quaternary deposits in the Doon valley near the Main Boundary Thrust in the Northwest Himalaya, India. Quaternary Int., 2017, 462, 162–175.
  • Kotoda, K., Wakamatsu, K. and Oya, M., Mapping liquefaction potential based on geomorphological land classification. In Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 1988, vol. 3, p. 195.
  • Wakamatsu, K., Akio, Y. and Ichiro, T., Geomorphological criteria for evaluating liquefaction potential considering the level-2 ground motion in Japan (26 March 2001). In International Conference Recent Advances in Geotechnical Earthquake Engineering Soil Dynamics, 2001; paper http://scholarsmine.mst.edu/icrageesd/04icrageesd/session04/3
  • Witter, R. C. et al., Maps of Quaternary deposits and liquefaction susceptibility in the central San Francisco Bay region, California. US Geol Survey Open-File Report 06-1037, 2006; http://pubs.usgs.gov/of/2006/1037/
  • GSI and NRSC, Manual for national geomorphological and lineament mapping on 1 : 50,000 scale. (Document control number: NRSC-RS&GISAA-ERG-G&GD-FEB’ 10-TR149), National Remote Sensing Centre, Hyderabad, 2010.
  • Martha, T. R., Ghosh, D., Kumar, K. V., Lesslie, A. and Ravi Kumar, M. V., Geospatial technologies for national geomorphology and lineament mapping project – a case study of Goa state. J. Indian Soc. Remote Sensing, 2013, 41(4), 905–920; doi:10.1007/s12524012-0260-1.
  • http//nbsslup.in

Abstract Views: 380

PDF Views: 120




  • Regional Liquefaction Susceptibility Mapping in the Himalayas using Geospatial Data and AHP Technique

Abstract Views: 380  |  PDF Views: 120

Authors

Ramesh Pudi
Geosciences Group, National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
Tapas R. Martha
Geosciences Group, National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
Priyom Roy
Geosciences Group, National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
K. Vinod Kumar
Geosciences Group, National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
P. Rama Rao
Department of Geophysics, College of Science and Technology, Andhra University, Visakhapatnam 530 003, India

Abstract


Liquefaction susceptibility (LS) assessment is a necessary input for seismic zonation studies. LS can be done using geospatial models by integration of thematic layers. In this study, we have used analytical hierarchy process for integration of thematic layers (e.g. water table depth, peak horizontal acceleration, etc.) to generate a regional LS map for Uttarakhand and Himachal Pradesh in India. The final map was classified as liquefaction-likely, liquefaction-possible and liquefaction-not-likely zones. Results show Doon valley and Himalayan foothills are more prone to LS than the higher Himalayas.

Keywords


Analytical Hierarchy Process, Earthquakes, Geospatial Data, Liquefaction Susceptibility.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi11%2F1868-1877