Open Access Open Access  Restricted Access Subscription Access

Is Rubber Monoculture Banishing Agrobiodiversity and Happiness? Evidences from Shifting Cultivation Landscape of Tripura, Northeast India


Affiliations
1 College of Horticulture and Forestry, Central Agricultural University, Pasighat 791 102, India
2 Division of Agricultural Extension, Krishi Anusandhan Bhavan-I, ICAR, New Delhi 110 012, India
3 ICAR-Indian Institute of Pulses Research, Kanpur 278 002, India
4 ICAR-Agricultural Technology Application Research Institute, Kanpur 278 002, India
 

Natural environmental settings, in general, are considered by humans as the ideal ambience which makes them happy and reinvigorated especially within their mental realm. If this is the case, can we assume that all green spaces are synonymous to augmenting happiness? Biodiversity is expressed in terms of a system having number and abundance of different species. For resilience of various ecosystem services like food production, climate regulation, and pest management to take place, prevalence of such biodiversity is essential which can substantially contribute to sustained human well-being. In this study, we assessed the status of agrobiodiversity and subjective well-being of an indigenous community amidst the transition from shifting cultivation (SC) to monoculture of natural rubber (NR). Sampling the respondents from 18 villages of Dhalai, Tripura, a remotely located district in northeast India and bordered by Bangladesh, we used mixed methods research for in depth investigation. Findings revealed that in the SC landscape of study area, the cultivated crop species and livestock breeds were being largely replaced by encroachment from rubber plantation. We documented only 19 crop species on such a landscape which is otherwise known for its vast agrobiodiversity in the tropics. This kind of transition from SC to NR which is usually supported by the government development interventions, has severely affected the ecosystem services of such landscapes and banishing happiness from the indigenous communities, as perceived by them. Hence stabilization of rich agrobiodiversity and simultaneously ensuring the peoples’ well-being is the only potential alternative for development in the region.

Keywords

Agrobiodiversity, Indigenous Community, Northeast India, Rubber Plantation, Shifting Cultivation Landscape.
User
Notifications
Font Size

  • Peng, L., Zhiming, F., Luguang, J., Chenihual, L. and Jingua, Z., A review of swidden agriculture in Southeast Asia. Remote Sens., 2014, 6, 1654–1683; https://doi.org/10.3390/rs6021654.
  • Schuck, E. C., Nganje, W. and Yantio, D., The role of land tenure and extension education in the adoption of slashes and burn agriculture. Ecol. Econ., 2002, 43, 61–70; https://doi.org/10.1016/S0921-8009(02)00180-5.
  • Heinimann, A. et al., A global view of shifting cultivation: recent, current, and future extent. PLoS ONE, 2017, 12(9), e0184479; https://doi.org/10.1371/journal.pone.0184479.
  • van Vliet, N. et al., Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Global Environ. Chang., 2012, 22, 418–429; https://doi.org/10.1016/j.gloenvcha.2011.10.009.
  • Craswell, E. T., Sajjapongse, A., Howlett, D. J. B. and Dowling, A. J., Agroforestry in the management of sloping lands in Asia and the Pacific. Agroforest. Syst., 1997, 38, 121–137; https://doi.org/10.1023/A:1005960612386.
  • Bruun, T. B., Berry, N., de Neergaard, A., Xaphokahme, P., McNicol, I. and Ryan, C. M., Long rotation swidden systems maintain higher carbon stocks than rubber plantations. Agric. Ecosyst. Environ., 2018, 256, 239–249; https://doi.org/10.1016/j.agee.2017.09.010.
  • Dressler, W. H. et al., The impact of swidden decline on livelihoods and ecosystem services in Southeast Asia: a review of the evidence from 1990 to 2015. Ambio, 2017, 46, 291–310; https://doi.org/10.1007/s13280-016-0836-z.
  • Parrotta, J. A., Wildburger, C. and Mansourian, S., Understanding relationships between biodiversity, carbon, forest and people: the key to achieving REDD+ objectives, a global assessment report by the Global Expert Panel on Biodiversity, Forest Management, and REDD+ IUFRO World Series, International Union of Forest Research Organizations (IUFRO), Vienna, Austria, 2012, vol. 31, p. 161.
  • Dalle, S. P., Pulido, M. T. and de Blois, S., Balancing shifting cultivation and forest conservation: lessons from a ‘sustainable landscape’ in south eastern Mexico. Ecol. Appl., 2011, 21, 1557–1572; https://doi.org/10.1890/10-0700.1.
  • Erskine, P. D., Lamb, D. and Bristow, M., Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? Forest Ecol. Manage., 2006, 233 (2–3), 205–210; https://doi.org/10.1016/j.foreco.2006.05.013.
  • Alem, S., Pavlis, J., Urban, J. and Kucera, J., Pure and mixed plantations of Eucalyptus camaldulensis and Cupressus lusitanica: their growth interactions and effect on diversity and density of undergrowth woody plants in relation to light. Open J. For., 2015, 5(4), 375–386; https://doi.org/10.4236/ojf.2015.54032.
  • Baltodano, J., Monoculture forestry: a critique from an ecological perspective. In Tree Trouble: A Compilation of Testimonies on the Negative Impact of Large-scale Monoculture Tree Plantations Prepared for the 6th Conference of the Parties of the Framework Convention on Climate Change. Friends of the Earth International, Amsterdam, The Netherlands, 2000, pp. 2–10.
  • Colchester, M., Plantations for People? Arborvitae (IUCN/WWF Forest Conservation Newsletter), 2006, vol. 31, p. 7.
  • Chattopadhyay, S., Environmental consequences of rubber plantations in Kerala. National Research Programme on Plantation Development. Discussion Paper, 2015, No. 44.
  • Nath, T. K., Inoue, M. and De Zoysa, M., Rubber planting for forest rehabilitation and enhancement of commercial livelihood: a comparative study in three South Asian countries. In 18th Commonwealth Forestry Conference, Edinburgh, 2010.
  • Xu, J., Grumbine, R. E. and Beckschäfer, P., Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecol. Indic., 2014, 36, 749–756.
  • Zhao, N., Wang, Z. Y., Xu, M. Z., Han, L. J. and Zhou, X. D., Research on aquatic ecology in the Naban River and restoration suggestions. In Proceedings of the International Conference on Fluvial Hydraulics (River Flow 2014) (eds Schleiss, A. J. et al.), Lausanne, CRC Press, Switzerland, 3–5 September 2014, pp. 2363–2369.
  • FAO, Sustainable Agriculture for Biodiversity. Biodiversity for Sustainable Agriculture, 2018; http://www.fao.org/3/I6602E/i6602e.pdf.
  • Millennium Assessment, Millennium Ecosystem Assessment (Synthesis Report). Island Press, Washington DC, 2005; www.millenniumassessment.org
  • Scherr, S. J., Poverty-Environment Interactions in Agriculture: Key Factors and Policy Implications. Paper prepared for the United Nations Development Programme (UNDP) and the European Commission (EC) expert workshop on Poverty and the Environment, Brussels, Belgium, 20–21 January 1999.
  • GoI, National Rubber Policy 2019, Department of Commerce Ministry of Commerce and Industry, Government of India; https://commerce.gov.in/writereaddata/uploadedfile/MOC_636871123490373426_National%20Rubber%20Policy%202019.pdf
  • Sinha, A. K., Rubber plantations in Northeast India: hopes vs. concerns. The Tripura Foundation, 2012, p. 3.
  • MoSPI, Statistical Year Book India: 2014. Ministry of Statistics and Programme Implementation, Govt of India, 2014; http://www.mospi.gov.in/statistical-year-book-india/2014.
  • GoT, Economic Review of Tripura: 2017–18, Directorate of Economics and Statistics Planning (Statistics) Department, Government of Tripura, Agartala, 2018.
  • GoT, Dhalai District Profile: 2016, Office of the District Magistrate & Collector, Dhalai, District, Ambassa, Tripura, 2016.
  • Chandramouli, C. and General, R., Census of India: 2011. Provisional Population Totals. New Delhi, Government of India, 2011.
  • FSI, State of Forest Report. Forest Survey of India, Dehradun, 2017.
  • Lau, J. D., Hicks, C. C., Gurney, G. G. and Cinner, J. E., What matters to whom and why? Understanding the importance of coastal ecosystem services in developing coastal communities. Ecosyst. Serv., 2019, 35, 219–230.
  • Yeom, D. J. and Kim, J. H., Comparative evaluation of species diversity indices in the natural deciduous forest of Mt. Jeombong. Forest Sci. Technol., 2011, 7(2), 68–74; doi:10.1080/21580103.2011.573940.
  • Cantril, H., The Pattern of Human Concerns, Rutgers University Press, New Brunswick, USA, 1965.
  • Pavot, W., The cornerstone of research on subjective well-being: Valid assessment methodology. Handbook of Well-Being (eds Diener, E., Oishi, S. and Tay, L.), UT, DEF Publishers, Salt Lake City, 2018.
  • Cheung, F. and Lucas, R. E., Assessing the validity of single-item life satisfaction measures: results from three large samples. Qual. Life Res., 2014, 23(10), 2809–2818.
  • Helliwell, J. F., Layard, R. and Sachs, J., World happiness Report 2013. UN Sustainable Development Solutions Network, New York, USA, 2014.
  • Gallup, G., World poll methodology. Technical Report. Washington, DC, USA, 2009.
  • Teegalapalli, K. and Datta, A., Shifting to settled cultivation: changing practices among the Adis in Central 318 Arunachal Pradesh, North-East India. Ambio, 2016, 45, 602–612; https://doi.org/10.1007/s13280-016-0765-x.
  • Alam, M. K. and Mohiuddin, M., Shifting cultivation (Jhum) agrobiodiversity at stake: Bangladesh Situation. Acta Hortic., 2009, 806, 709–716. https://doi.org/10.17660/ActaHortic.2009.806.88.
  • Pandey, D. K., Adhiguru, P., Vimla Devi, S., Dobhal, S., Dubey, S. K. and Mehra, T. S., A quantitative assessment of crop species diversity in shifting 3 cultivation system of Eastern Himalayas. Curr. Sci., 2019, 117(8), 1357–1363.
  • Springate-Baginski, O., Decriminalise agro-forestry! A primer on shifting cultivation in Myanmar. Transnational Institute, Amsterdam, Netherlands, 2018.
  • Steel, P., Taras, V., Uggerslev, K. and Bosco, F., The happy culture: a theoretical, meta-analytic, and empirical review of the relationship between culture and wealth and subjective well-being. Pers. Soc. Psychol. Rev., 2018, 22(2), 128–169; https://doi.org/10.1177/1088868317721372.
  • Torri, M. C. and Herrmann, T. M., Spiritual beliefs and ecological traditions in indigenous communities in India: enhancing communitybased biodiversity conservation. Nat. Cult., 2011, 6(2), 168– 191.

Abstract Views: 223

PDF Views: 82




  • Is Rubber Monoculture Banishing Agrobiodiversity and Happiness? Evidences from Shifting Cultivation Landscape of Tripura, Northeast India

Abstract Views: 223  |  PDF Views: 82

Authors

D. K. Pandey
College of Horticulture and Forestry, Central Agricultural University, Pasighat 791 102, India
P. Adhiguru
Division of Agricultural Extension, Krishi Anusandhan Bhavan-I, ICAR, New Delhi 110 012, India
Uma Sah
ICAR-Indian Institute of Pulses Research, Kanpur 278 002, India
N. Devachandra
College of Horticulture and Forestry, Central Agricultural University, Pasighat 791 102, India
S. K. Dubey
ICAR-Agricultural Technology Application Research Institute, Kanpur 278 002, India
Chandra Deo
College of Horticulture and Forestry, Central Agricultural University, Pasighat 791 102, India

Abstract


Natural environmental settings, in general, are considered by humans as the ideal ambience which makes them happy and reinvigorated especially within their mental realm. If this is the case, can we assume that all green spaces are synonymous to augmenting happiness? Biodiversity is expressed in terms of a system having number and abundance of different species. For resilience of various ecosystem services like food production, climate regulation, and pest management to take place, prevalence of such biodiversity is essential which can substantially contribute to sustained human well-being. In this study, we assessed the status of agrobiodiversity and subjective well-being of an indigenous community amidst the transition from shifting cultivation (SC) to monoculture of natural rubber (NR). Sampling the respondents from 18 villages of Dhalai, Tripura, a remotely located district in northeast India and bordered by Bangladesh, we used mixed methods research for in depth investigation. Findings revealed that in the SC landscape of study area, the cultivated crop species and livestock breeds were being largely replaced by encroachment from rubber plantation. We documented only 19 crop species on such a landscape which is otherwise known for its vast agrobiodiversity in the tropics. This kind of transition from SC to NR which is usually supported by the government development interventions, has severely affected the ecosystem services of such landscapes and banishing happiness from the indigenous communities, as perceived by them. Hence stabilization of rich agrobiodiversity and simultaneously ensuring the peoples’ well-being is the only potential alternative for development in the region.

Keywords


Agrobiodiversity, Indigenous Community, Northeast India, Rubber Plantation, Shifting Cultivation Landscape.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi1%2F108-113