Open Access Open Access  Restricted Access Subscription Access

Dual Frequency Radio Science Experiment Onboard Chandrayaan-2:A Radio Occultation Technique to Study Temporal and Spatial Variations in the Surface-Bound Ionosphere of the Moon


Affiliations
1 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
2 U.R. Rao Satellite Centre, Bengaluru 560 017, India
3 ISRO Telemetry, Tracking, and Command Network, Bengaluru 560 058, India
 

The Dual Frequency Radio Science experiment aboard Chandrayaan-2 uses the communication channel between orbiter and ground in radio occultation mode to study the temporal evolution of electron density in the lunar ionosphere. It consists of a highly stable 20 MHz evacuated miniaturized crystal oscillator source, having a stability of the order of 10–11, which generates two coherent signals at the X (8496 MHz) and S (2240 MHz) bands of radio frequencies. The coherent radio signals, transmitted simultaneously from the satellite and received at the ground-based deep station network receivers would be used to study temporal and spatial variations in the lunar ionosphere. The major science objectives of the experiments include: (i) to study variations in the ionosphere/ atmosphere of the Moon; (ii) to explore if the ionosphere of the Moon is omnipresent or has episodic appearances, and (iii) to confirm the source of ions in the lunar ionosphere – whether dusty or molecular.

Keywords

Chandrayaan, Ionosphere, Moon, Radio Occultation.
User
Notifications
Font Size

  • Stern, S. A., The lunar atmosphere: history, status, current problems, and context. Rev. Geophys., 1999, 37, 453–492.
  • Killen, R. M. and Ip, W., The surface-bound atmospheres of Mercury and the Moon. Rev. Geophys., 1999, 37, 361–406.
  • Mendillo, M., Baumgardner, J. and Wilson, J., Observational test for the solar wind of the Moon’s sodium atmosphere. Icarus, 1999, 137, 23–25.
  • Hinton, F. L. and Taeusch, D., Variation of the lunar atmosphere with the strength of the solar wind. J. Geophys. Res., 1964, 69(7), 1341–1347.
  • Johnson, F. S., Lunar atmosphere. Rev. Geophys. Space Phys., 1971, 9, 813–823.
  • Hodges, R. R., Hoffman, J. H., Johnson, F. S. and Evans, D. E., Lunar atmosphere composition results from Apollo 17. Proc. Lunar Sci. Conf., 1973, 2875, 2865–2875.
  • Hodges, R. R., Methods for Monte Carlo simulation of the exospheres of the Moon and Mercury. J. Geophys. Res., 1980, 85, 164– 170.
  • Daily, W. D., Barker, W. A., Clark, M., Dyal, P. and Parkin, C. W., Ionosphere and atmosphere of the Moon in the geomagnetic tail. J. Geophys. Res., 1977, 82(33), 5441–5451.
  • Sridharan, R., Ahmed, S. M., Tirtha Pratim Das, Sreelatha, P., Pradeepkumar, P., Neha Naik and Supriya, G., ‘Direct’ evidence of water (H2O) in the sunlit lunar ambience from CHASE on MIP of Chandrayan I. Planet Space Sci., 2010, 58.
  • SridharanR., Ahmed, S. M., Das, T. P., Sreelatha, P., Pradeepkumar, P., Naik, N. and Supriyas, G., The sunlit lunar atmosphere: a comprehensive study by CHASE on the Moon impact probe of Chandrayan-I. Planet. Space Sci., 2010, 58, 1567–1577.
  • Wilson, J. K., Mendillo, M. and Spence, H. E., Magnetospheric influence on the Moon’s exosphere. J. Geophys. Res., 2006, 111.
  • Flynn, B. C. and Stern, S., A spectroscopic survey of metallic species abundances in the lunar atmosphere. Icarus, 1996, 124, 530–536.
  • Hoffman, J. H., Lunar atmospheric composition experiment. Final Report, 1 June 1971–30 September 1975 Texas University at Dallas, USA, 1975.
  • Choudhary, R. K., Ambili, K. M., Choudhury, S., Dhanya, M. B. and Bhardwaj, A., On the origin of the ionosphere at the Moon using results from Chandrayaan‐1 S-band radio occultation experiment and a photochemical model. Geophys. Res. Lett., 2016, 43.
  • Stubbs, T. J., Glenar, D. A., Farrell, W. M., Vondrak, R. R., Collier, M. R., Halekas, J. S. and Delory, G. T., On the role of dust in the lunar ionosphere. Planet Space Sci., 2011, 59, 1659–1664.
  • Hodges, R. R., Hoffman, J. H. and Johnson, F. S., The lunar atmosphere. Icarus, 1974, 21, 415–426.
  • Bauer, S. J., Limits to a lunar ionosphere. Anz. Abt. II, 1996, 133, 17–21.
  • Pomalaza-Díaz, J. C., Measurement of the Lunar Ionosphere by Occultation of the Pioneer VII Spacecraft. Department of Electrical Engineering, Stanford University, USA, 1967.
  • Vyshlov, A. S., Preliminary results of circumlunar plasma research by the Luna 22 spacecraft. In Space Research XVI (ed. Rycroft, M. J.), 1976, pp. 945–949.
  • Pluchino, S., Schilliro, F., Salerno, E., Pupillo, G., Maccaferri, G. and Cassaro, P., Radio occultation measurements of the lunar ionosphere. Mem. S.A. Lt. Suppl., 2008, 12(53).
  • Imamura, T. et al., Radio occultation measurement of the electron density near the lunar surface using a subsatellite on the SELENE mission. J. Geophys. Res., 2012, 117, A06303.
  • Kliore, A., Cain, D. L., Levy, G. S., Eshleman, V. R., Fjeldbo, G. and Drake, F. D., Occultation experiment: Results of the first direct measurement of Mars’s atmosphere and ionosphere. Science, 1965, 149(3689), 1243–1248.
  • Fjeldbo, G. and Eshelman, V., The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci., 1968, 16, 1035–1059.
  • Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P. and Hardy, K. R., Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res.: Atmos., 1997, 102(D19), 23429–23465.
  • Wickert, J. et al., Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophys. Res. Lett., 2001, 28(17), 3263–3266.
  • Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S. and Hunt, D., Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT‐3 mission. Geophys. Res. Lett., 2007, 34.
  • Karayel, E. T. and Hinson, D., Sub-Fresnel scale vertical resolution in atmospheric profiles from radio occultation. Radio Sci., 1997, 32, 411–423.
  • Curkendall, D. W. and Border, J. S., Delta-DOR: the onenanoradian navigation measurement system of the deep space network – history, architecture, and componentry. In The Interplanetary. Network Progress Report, 2013, vol. 42, p. 193.
  • Krisher, T. P., Parametrized post-Newtonian gravitational redshift. Phys. Rev. D, 1993, 48(10), 4639.
  • Pätzold, M. et al., MaRS: Mars express orbiter radio science. In Mars Express: The Scientific Payload, 2004, vol. 1240, pp. 141– 163.
  • Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L. and Flasar, F. M., Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res.: Planets, 1999, 104(E11), 26997–27012.
  • Elsmore, B., Radio observations of the lunar atmosphere. Philos. Mag., 1957, 2, 1040–1046.
  • Andrew, B. H., Branson, N. J. B. A. and Wills, D., Radio observations of the Crab nebula during a lunar occultation. Nature, 1964, 203, 171–173.
  • Reasoner, D. L. and Burke, W., Characteristic of the lunar photoelectron layer in the geomagnetic tail. J. Geophys. Res., 1972, 77, 6671–6687.
  • Ando, H. et al., Dual-spacecraft radio occultation measurement of the electron density near the lunar surface by the SELENE mission. J. Geophys. Res.: Space Phys., 2012, 117(A8).
  • Vyshlov, A. S. and Savich, N. A., Observations of radio source occultations by the moon and the nature of the plasma near the moon. Cosmic Res., 1979, 16, 551–556.
  • Feldman, P. D. et al., Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP. Icarus, 2014, 233, 106–113.
  • Imamura, T. et al., The possibility of studying the lunar ionosphere with the SELENE radio science experiment. Earth, Planets Space, 2008, 60(4), 387–390.
  • Noguchi, K., Imamura, T., Oyama, K.-I. and Saito, A., Application of the GPS network to estimate the effect of the terrestrial ionosphere on the radio occultation measurements of planetary ionospheres. Radio Sci., 2001, 36(6), 1607–1613.

Abstract Views: 469

PDF Views: 126




  • Dual Frequency Radio Science Experiment Onboard Chandrayaan-2:A Radio Occultation Technique to Study Temporal and Spatial Variations in the Surface-Bound Ionosphere of the Moon

Abstract Views: 469  |  PDF Views: 126

Authors

R. K. Choudhary
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
K. R. Bindu
U.R. Rao Satellite Centre, Bengaluru 560 017, India
Kumar Harshit
U.R. Rao Satellite Centre, Bengaluru 560 017, India
Rahul Karkara
U.R. Rao Satellite Centre, Bengaluru 560 017, India
K. M. Ambili
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
T. K. Pant
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
Devadas Shenoy
U.R. Rao Satellite Centre, Bengaluru 560 017, India
Chandrakanta Kumar
U.R. Rao Satellite Centre, Bengaluru 560 017, India
N. Hemanth Kumar Reddy
U.R. Rao Satellite Centre, Bengaluru 560 017, India
T. K. Rajendran
ISRO Telemetry, Tracking, and Command Network, Bengaluru 560 058, India
M. Nazer
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
M. Shajahan
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India

Abstract


The Dual Frequency Radio Science experiment aboard Chandrayaan-2 uses the communication channel between orbiter and ground in radio occultation mode to study the temporal evolution of electron density in the lunar ionosphere. It consists of a highly stable 20 MHz evacuated miniaturized crystal oscillator source, having a stability of the order of 10–11, which generates two coherent signals at the X (8496 MHz) and S (2240 MHz) bands of radio frequencies. The coherent radio signals, transmitted simultaneously from the satellite and received at the ground-based deep station network receivers would be used to study temporal and spatial variations in the lunar ionosphere. The major science objectives of the experiments include: (i) to study variations in the ionosphere/ atmosphere of the Moon; (ii) to explore if the ionosphere of the Moon is omnipresent or has episodic appearances, and (iii) to confirm the source of ions in the lunar ionosphere – whether dusty or molecular.

Keywords


Chandrayaan, Ionosphere, Moon, Radio Occultation.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi2%2F210-218