Open Access Open Access  Restricted Access Subscription Access

Current Status of Thermionic Conversion of Solar Energy


Affiliations
1 Department of Physics, Covenant University, Ogun State, Nigeria
2 Department of Mechanical Engineering, Covenant University, Ogun State, Nigeria
3 Department of Physics, Mountain Top University, Ibafo, Ogun State, Nigeria
 

Recent advances in science and technology of materials fabrication, engineering of work functions, and micrometer gap machining between emitter and collector are making thermionic conversion/converter (TEC) of solar energy an emerging technology. As the converter is the lightest of all devices with highest direct power conversion density (per unit area of the converting surface), it has, potential for substituting photovoltaic technology to a large extent and for deployment in space as a power source. This article summarizes the current efforts/technologies in the field, and discusses their inherent merits and demerits towards realizing the goal of achieving high conversion efficiency and simulation of performance evaluation of a solar TEC. We also discuss the use of both metals and nanomaterials, critical roles of work functions of both emitter and collector, collector temperature, absorptivity and emissivity of the surfaces, radiation losses, and use of both metals and nanomaterials in the efficiency of conversion of solar energy. We further deal with the role of correcting thermionic emission current density equation in the simulation of solar TEC performance. We discuss briefly the possible methods of space-charge control in future in a solar TEC.

Keywords

Emission, Solar Energy, Thermionic Conversion, Work Function.
User
Notifications
Font Size

  • Olawole, O. C. and De, D. K., Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector. J. Photon. Energy, 2018, 8, 1.
  • Yuan, H., Riley, D. C., Shen, Z.-X., Pianetta, P. A., Melosh, N. A. and Howe, R. T., Back-gated graphene anode for more efficient thermionic energy converters. Nano Energy, 2017, 32, 67–72.
  • Wanke, R., Voesch, W., Rastegar, I., Kyriazis, A., Barun, W. and Mannhart, J., Thermoelectronic energy conversion: concepts and materials. MRS Bull., 2017, 42, 518–524.
  • Schlichter, W., Die spontane elektronenemission glühender Metalle und das glühelektrische element. Ann. Phys., 1915, 352, 573–640.
  • Rasor, N. S. and Member, S., Thermionic energy conversion plasmas. IEEE Trans. Plasma Sci., 1991, 19, 1191–1207.
  • Rouklove, P., Thermionic Converter and Generator Development, Supporting Research and Advanced Development, Space Programs Summary 37-40, Jet Propulsion Laboratory, Pasadena, California, 31 August 1966, vol. IV, pp. 1–14.
  • Frank, T. G., Kern, E. A. and Booth, L. A., Application of thermionic conversion using a fusion reactor energy source: a preliminary assessment.
  • Fitzpatrick, G. O., Britt, E. J. and Moyzhes, B., Updated perspective on the potential for thermionic conversion to meet 21st century energy needs. In 97th Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203) IEEE, Honolulu, Hawaii, 1997, vol. 2, pp. 1045–1051.
  • Koeck, F. A. M., Nemanich, R. J., Lazea, A. and Haenen, K., Thermionic electron emission from low work-function phosphorus doped diamond films. Diam. Relat. Mater., 2009, 18, 789–791.
  • Nemanich, R. J., Bilbro, G. L., Bryan, E. N., Koeck, F. A., Smith, J. R. and Tang, Y., Thermionic and field electron emission devices from diamond and carbon nanostructures. In Third International Nanoelectronics Conference (INEC), IEEE, Hong Kong, China, 2010, pp. 56–57.
  • Wei, X., Wang, S., Chen, Q. and Peng, L., Breakdown of Richardson’s law in electron emission from individual self-Jouleheated carbon nanotubes. Sci. Rep., 2015, 4, 5102.
  • Powers, M. J. et al., Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett., 1995, 67, 3912–3914.
  • Benke, S. M. and Venable, J. R., Operational testing and thermal modeling of a TOPAZ-II single-cell thermionic fuel element test stand. AIP Conf. Proc., 1995, 324, 495–501.
  • Gryaznov, G. M., 30th anniversary of the startup of Topaz – the first thermionic nuclear reactor in the world. At. Energy, 2000, 89, 510–515.
  • Thermionics Quo Vadis? National Academies Press, Washington, DC, USA, 2001.
  • Naito, H., Kohsaka, Y., Cooke, D. and Arashi, H., Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system. Sol. Energy, 1996, 58, 191–195.
  • Smestad, G. P., Conversion of heat and light simultaneously using a vacuum photodiode and the thermionic and photoelectric effects. Sol. Energy Mater. Sol. Cells, 2004, 82, 227–240.
  • Begg, L. L., Streckert, H. S., Peltier, D. and Watson, J., Conceptual design of high power advanced low mass (HPALM) solar thermionic power system. In 37th Intersociety Energy Conversion Engineering Conference (IECEC’02), IEEE, 2002, pp. 7–11.
  • Yaghoobi, P., Moghaddam, M. V. and Nojeh, A., ‘Heat trap’: light-induced localized heating and thermionic electron emission from carbon nanotube arrays. Solid State Commun., 2011, 151, 1105–1108.
  • Buencuerpo, J. et al., Light-trapping in photon enhanced thermionic emitters. Opt. Express, 2015, 23, A1220.
  • Segev, G., Rosenwaks, Y. and Kribus, A., Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion. Sol. Energy Mater. Sol. Cells, 2015, 140, 464–476.
  • Schwede, J. W. et al., Photon-enhanced thermionic emission from heterostructures with low interface recombination. Nature Commun., 2013, 4, 1576.
  • Kribus, A. and Segev, G., Solar energy conversion with photonenhanced thermionic emission. J. Opt., 2016, 18, 073001.
  • Lee, J.-H., Bargatin, I., Melosh, N. A. and Howe, R. T., Optimal emitter–collector gap for thermionic energy converters. Appl. Phys. Lett., 2012, 100, 173904.
  • Abdul Khalid, K. A., Leong, T. J. and Mohamed, K., Review on thermionic energy converters. IEEE Trans. Electron Devices, 2016, 63, 2231–2241.
  • Lee, J.-H. et al., Microfabricated thermally isolated low workfunction emitter. J. Microelectromech. Syst., 2014, 23, 1182– 1187.
  • Wanke, R., Hassink, G. W. J., Stephanos, C., Rastegar, I., Braun, W. and Mannhart, J., Magnetic-field-free thermoelectronic power conversion based on graphene and related two-dimensional materials. J. Appl. Phys., 2016, 119, 244507-4.
  • Wang, G., Chang, B., Li, X., Fu, R., Yang, L. and Wang, K., Solar energy conversion through thermally enhanced external photoelectric emission from NaCsSb photocathodes. Sol. Energy Mater. Sol. Cells, 2017, 159, 73–79.
  • Liu, L., Diao, Y. and Xia, S., High-performance GaAs nanowire cathode for photon-enhanced thermionic emission solar converters. J. Mater. Sci., 2019, 54, 5605–5614.
  • Smerdov, R. S., Mustafaev, A. S., Soukhomlinov, V. S., Spivak, Y. M. and Moshnikov, V. A., Nanostructured porous silicon and graphene-based materials for PETE electrode synthesys. In IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), IEEE, Petersburg and Moscow, Russia, 2019, pp. 786–790.
  • Smerdov, R. S., Mustafaev, A. S., Spivak, Y. M. and Moshnikov, V. A., Porous silicon and graphene-based nanostructures for novel solar energy systems. J. Phys. Conf. Ser., 2018, 1135, 012038.
  • De, D. K. and Olukunle, O. C., A theoretical study on solar thermionic (thermo electronic) power conversion with a parabolic concentrator. IEEE, 2015, 1–7.
  • Olawole, O. C., De, D. K. and Oyedepo, S. O., Energy dynamics of solar thermionic power conversion with emitter of graphene. Proc. SPIE, 2016, 9932, 99320S.
  • Zanin, H. et al., Porous boron-doped diamond/carbon nanotube electrodes. ACS Appl. Mater. Interfaces, 2014, 6, 990–995.
  • Zhu, F. et al., Heating graphene to incandescence and the measurement of its work function by thermionic emission method. Nano Res., 2014, 7, 553–560.
  • Jurgens, R. F., High-temperature electronics applications in space exploration. IEEE Trans. Ind. Electron., 1982, IE-29, 107–111.
  • Wu, C., Optimal power from a radiating solar-powered thermionic engine. Energy Convers. Manage., 1992, 33, 279–282.
  • Olukunle, O. C. and De, D. K., Thermo-electronic solar power conversion with a parabolic concentrator. J. Semicond., 2016, 37, 024002.
  • De, D. K. and Olawole, O. C., Modified Richardson–Dushman equation and modeling thermionic emission from monolayer graphene. Proc. SPIE, 2016, 9927, 1–7.
  • El-Genk, M. S. and Momozaki, Y., An experimental investigation of the performance of a thermionic converter with planar molybdenum electrodes for low temperature applications. Energy Convers. Manage., 2002, 43, 911–936.
  • Lamba, R. and Kaushik, S. C., Energy and exergy analysis of an irreversible thermionic generator. In Seventh Power India International Conference (PIICON), IEEE, Govt Engineering College, Bikaner, Rajasthan, India, 2016, pp. 1–6.
  • Datas, A., Hybrid thermionic–photovoltaic converter. Appl. Phys. Lett., 2016, 108, 143503.
  • Mishra, S. K., Kahaly, M. U. and Misra, S., Efficient utilization of multilayer graphene towards thermionic convertors. Int. J. Therm. Sci., 2017, 121, 358–368.
  • Xiao, G., Zheng, G., Qiu, M., Li, Q., Li, D. and Ni, M., Thermionic energy conversion for concentrating solar power. Appl. Energy, 2017, 208, 1318–1342.
  • Xiao, L., Wu, S.-Y. and Yang, S.-L., Parametric study on the thermoelectric conversion performance of a concentrated solardriven thermionic–thermoelectric hybrid generator. Int. J. Energy Res., 2018, 42, 656–672.
  • Hasan, M. M., Cuskelly, D., Sugo, H. and Kisi, E. H., Low temperature synthesis of low thermionic work function (LaxBa1–x)B6. J. Alloys Compd., 2015, 636, 67–72.
  • Lim, I. T., Lambert, S. A., Vay, J.-L. and Schwede, J. W., Electron reflection in thermionic energy converters. Appl. Phys. Lett., 2018, 112, 073906.
  • Bellucci, A. et al., Preliminary characterization of ST2G: solar thermionic–thermoelectric generator for concentrating systems. National Research Council (US). Committee on Thermionic Research and Technology; National Research Council (US). Aeronautics and Space Engineering Board, United States. Defense Threat Reduction Agency, 2015, 020007.
  • De, D. K. and Olawole, O. C., A three-dimensional model for thermionic emission from graphene and carbon nanotube. J. Phys. Commun., 2019, 3, 015004.
  • Bao, L., Qi, X., Bao, T., and Tegus, O., Structural, magnetic, and thermionic emission properties of multi-functional La1–xCaxB6 hexaboride. J. Alloys Compd., 2018, 731, 332–338.
  • Hou, S. and Zhang, H., A novel solar assisted vacuum thermionic generator–absorption refrigerator cogeneration system producing electricity and cooling. Energy Convers. Manage., 2019, 187, 83– 92.
  • Zhang, X., Ang, Y. S., Du, J.-Y., Chen, J. and Ang, L. K., Graphene-based thermionic–thermoradiative solar cells: concept, efficiency limit, and optimum design. J. Clean. Prod., 2020, 242, 118444.
  • Jenkins, R., A review of thermionic cathodes. Vacuum, 1969, 19, 353–359.
  • Kirkwood, D. M. et al., Frontiers in thermionic cathode research. IEEE Trans. Electron Devices, 2018, 65, 2061–2071.
  • Hishinuma, Y., Geballe, T. H., Moyzhes, B. Y. and Kenny, T. W., Refrigeration by combined tunneling and thermionic emission in vacuum: Use of nanometer scale design. Appl. Phys. Lett., 2001, 78, 2572–2574.
  • Liang, S.-J. and Ang, L. K., Electron thermionic emission from graphene and a thermionic energy converter. Phys. Rev. Appl., 2015, 3, 014002.
  • Meir, S., Highly-efficient thermoelectronic conversion of solar energy and heat into electric power. J. Renew. Sustain. Energy, 2013, 5, 043127.
  • Wei, X., Chen, Q. and Peng, L., Electron emission from a twodimensional crystal with atomic thickness. AIP Adv., 2013, 3.
  • Nemanich, R. J., Baumann, P. K., Benjamin, M. C., King, S. W., van der Weide, J. and Davis, R. F., Negative electron affinity surfaces of aluminum nitride and diamond. Diam. Relat. Mater., 1996, 5, 790–796.
  • Westover, T. L., Franklin, A. D., Cola, B. A., Fisher, T. S. and Reifenberger, R. G., Photo- and thermionic emission from potassium-intercalated carbon nanotube arrays. J. Vac. Sci. Technol. B, 2010, 28, 423–434.
  • Shamsudin, N. H., Abdul Khalid, K. A. and Mohamed, K., Synthesizing vertically aligned zinc oxide nanowires on borosilicate glass using vapor trapping approach. Adv. Mater. Res., 2014, 1024, 87–90.
  • Sugino, T., Kimura, C. and Yamamoto, T., Electron field emission from boron-nitride nanofilms. Appl. Phys. Lett., 2002, 80, 3602– 3604.
  • Go, D. B. et al., Thermionic energy conversion in the twenty-first century: advances and opportunities for space and terrestrial applications. Front. Mech. Eng., 2017, 3, 13.
  • Pan, T., Busta, H., Gorski, R. and Rozansky, B., Inverse tunneling of electrons in field emission heat engines. In 27th International Vacuum Nanoelectronics Conference (IVNC) IEEE, Engelberg, Switzerland, 2014, pp. 147–148.
  • Gibson, J. W., Haas, G. A. and Thomas, R. E., Investigation of scandate cathodes: emission, fabrication, and activation processes. IEEE Trans. Electron Devices, 1989, 36, 209–214.
  • Koeck, F. A. M., Nemanich, R. J., Lazea, A. and Haenen, K., Thermionic electron emission from low work-function phosphorus doped diamond films. Diam. Relat. Mater., 2009, 18, 789–791.
  • Smith, J. R., Bilbro, G. L. and Nemanich, R. J., Theory of space charge limited regime of thermionic energy converter with negative electron affinity emitter. J. Vac. Sci. Technol. B, 2009, 27, 1132–1141.
  • Smith, J. R., Increasing the efficiency of a thermionic engine using a negative electron affinity collector. J. Appl. Phys., 2013, 114, 164514.
  • Shimizu, M. et al., JSUS solar thermal thruster and its integration with thermionic power converter. AIP Conf. Proc., 1998, 420, 364–369.
  • Clark, P. N. et al., Solar thermionic test in a thermal receiver. AIP Conf. Proc., 2006, 813, 598–606.
  • Rufeh, F., Performance improvement of cesium thermionic converters by addition oxygen. In 7th Intersociety Energy Conversion Conference, San Diego, California, 1972.
  • Hansen, L. K., Hatch, G. L., Fitzpatrick, G. O. and Al, E., The plasmatron as an advanced performance thermionic converter. In In 11th Intersociety Energy Conversion Engineering Conference, NV, USA, 1976, pp. 1630–1634.
  • Shimada, K., Low arc drop hybrid mode thermionic converter. In 12th Intersociety Energy Conversion Engineering Conference, Washington DC, USA, 1977, pp. 1568–1574.
  • Henne, R., Bradke, M. V. and Weber, W., Progress in the development of small flame heated thermionic energy converters. In Intersoc. In Energy to the 21st Century; Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference, Seattle, Wash, 18–22 August 1980. Volume 3 (A80-48165 21-44) American Institute of Aeronautics and Astronautics, Inc., New York, 1980, pp. 2089–2094.
  • Goodale, D. B., Reagan, P., Miskolczy, G. and Al., E., Combustion performance of CVD silicon carbide thermionic diodes. In Energy to the 21st Century; Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference, Seattle, Wash, 1980, pp. 2095–2097.
  • Smith, M. D., Manda, M. L. and Britt, E. J., Utilization of low temperature insulators and seals in thermionic converters. In Energy to the 21st Century; Proceedings of the Fifteenth Intersoc. Energy Converters. Engineering Conference, Seattle, Wash, 1980, 2098–2102.
  • Stark, G., Saunders, M. and Lieb, D., Thermionic converter output as a function of collector temperature. In Energy to the 21st Century; Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference, Seattle, Wash, 1980.
  • Goodale, D., Lieb, D. and Neale, D., Solar thermionic energy converter experiment. In Proceedings of Intersoc Energy Convers Engineering Conference Thermo Electron Corporation; 4(CONF820814-), Waltham, MA, USA, 1982.
  • Dick, R. S., Britt, E. J., Fitzpatrick, G. O. and Al., E., High performance, close-spaced thermionic converters. In Proceedings of the Intersoc Energy Convers Engineering Conference Rasor Associates, Inc, Sunnyvale, California, USA, 1983.
  • El-Genk, M. S. and Luke, J. R., Performance comparison of thermionic converters with smooth and macro-grooved electrodes. Energy Convers. Manage., 1999, 40, 319–334.
  • El-Genk, M. S. and Momozaki, Y., An experimental investigation of the performance of a thermionic converter with planar molybdenum electrodes for low temperature applications. Energy Convers. Manage., 2002, 43, 911–936.
  • Momozaki, Y. and El-Genk, M. S., Investigations of the performance of grooved electrodes thermionic converters at collector temperatures up to 1023 K. Energy Convers. Manage., 2004, 45, 1153–1173.
  • Liang, S.-J., Liu, B., Hu, W., Zhou, K. and Ang, L. K., Thermionic energy conversion based on graphene van der Waals heterostructures. Sci. Rep., 2017, 7, 46211.
  • Khalid, K. A. A., Leong, T. J. and Mohamed, K., Review on thermionic energy converters. IEEE Trans. Electron Devices, 2016, 63, 2231–2241.
  • Baksht, F. G., Dyuzhev, G. A., Martsinovskiy, A. M., Moyzhes, B. Y., Pikus, G. Y., Sonin, E. B. and Yur’yev, V. G. , Thermionic converters and low-temperature plasma. Technical Report N, Technical Information Center/DOE, 1978, vol. 80, pp. 17579.
  • Moyzhes, B. Y. and Geballe, T. H., The thermionic energy converter as a topping cycle for more efficient heat engines – new triode designs with a longitudinal magnetic field. J. Phys. D, 2005, 38, 782–786.
  • Littau, K. A. et al., Microbead-separated thermionic energy converter with enhanced emission current. Phys. Chem. Chem. Phys., 2013, 15, 1442–1446.
  • Belbachir, R. Y., An, Z. and Ono, T., Thermal investigation of a micro-gap thermionic power generator. J. Micromech. Microeng., 2014, 24, 085009.
  • Lee, J.-H., Bargatin, I., Melosh, N. A. and Howe, R. T., Optimal emitter-collector gap for thermionic energy converters. Appl. Phys. Lett., 2012, 100, 173904.
  • Misra, S., Upadhyay Kahaly, M. and Mishra, S. K., Thermionic emission from monolayer graphene, sheath formation and its feasibility towards thermionic converters. J. Appl. Phys., 2017, 121, 065102.
  • Khatoon, S. A., Ansari, M. M. and Ashraf, S., Effect of temperature-dependent work function and Fermi energy on thermionic emission current density in graphene. AIP Conf. Proc., 2018, 1953, 030239.
  • Liang, S. J. and Ang, L. K., Electron thermionic emission from graphene and thermionic energy converter. Phys. Rev. Appl., 2015, 3, 014002.

Abstract Views: 284

PDF Views: 83




  • Current Status of Thermionic Conversion of Solar Energy

Abstract Views: 284  |  PDF Views: 83

Authors

O. C. Olawole
Department of Physics, Covenant University, Ogun State, Nigeria
D. K. De
Department of Physics, Covenant University, Ogun State, Nigeria
S. O. Oyedepo
Department of Mechanical Engineering, Covenant University, Ogun State, Nigeria
O. F. Olawole
Department of Physics, Mountain Top University, Ibafo, Ogun State, Nigeria
E. S. Joel
Department of Physics, Covenant University, Ogun State, Nigeria

Abstract


Recent advances in science and technology of materials fabrication, engineering of work functions, and micrometer gap machining between emitter and collector are making thermionic conversion/converter (TEC) of solar energy an emerging technology. As the converter is the lightest of all devices with highest direct power conversion density (per unit area of the converting surface), it has, potential for substituting photovoltaic technology to a large extent and for deployment in space as a power source. This article summarizes the current efforts/technologies in the field, and discusses their inherent merits and demerits towards realizing the goal of achieving high conversion efficiency and simulation of performance evaluation of a solar TEC. We also discuss the use of both metals and nanomaterials, critical roles of work functions of both emitter and collector, collector temperature, absorptivity and emissivity of the surfaces, radiation losses, and use of both metals and nanomaterials in the efficiency of conversion of solar energy. We further deal with the role of correcting thermionic emission current density equation in the simulation of solar TEC performance. We discuss briefly the possible methods of space-charge control in future in a solar TEC.

Keywords


Emission, Solar Energy, Thermionic Conversion, Work Function.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi4%2F543-552