Open Access Open Access  Restricted Access Subscription Access

Laser Induced Breakdown Spectroscope on Chandrayaan-2 Rover:A Miniaturized Mid-UV to Visible Active Spectrometer for Lunar Surface Chemistry Studies


Affiliations
1 Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
 

Laser Induced Breakdown Spectroscope (LIBS) instrument flown in Chandrayaan-2 mission to the Moon, is one of the scientific instruments on the Pragyaan rover. It is primarily developed to carry out in situ investigations for the elemental composition study of lunar regolith and pebbles on the Moon surface in a previously unexplored high latitude area in the southern polar region. A pulsed laser source, a set of optical lenses and mirrors, an aberrationcorrected concave holographic grating and a linear detector, are the principal electro-optical accessories of the instrument. The developed LIBS is a lightweighted (~1.1 kg) and low power consuming (≤1.2 W) compact instrument. This paper presents the system engineering and development aspects of the LIBS instrument along with results from environmental tests. Performance evaluation of the instrument during endto- end testing is satisfactory and within desired specifications. Details on ground calibration techniques used to evaluate the instrument capability are also presented.

Keywords

Chandrayaan-2 Mission, Laser-Induced Ablation, Moon, Plasma Emission, Spectroscopy.
User
Notifications
Font Size

  • Reider, R. et al., The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary result from the X-ray mode. Science, 1997, 278(5344), 1771–1774.
  • Priestley, T., Clark, B. C., Baird, A. K., Keil, K. and Rose, H. J., Preliminary results from the viking X-ray fluorescence experiment: the first sample from Chryse Plantia, Mars. Science, 1976, 194(4260), 81–84.
  • Radziernski, L. J., Loree, T. R., Cremers, D. A. and Hoffman, N. M., Time-resolved laser-induced breakdown spectroscopy (LIBS): a new method for spectrochemical analysis. LANL Report, LAUR-82487, Los Alamos National Laboratory, NM, 1982.
  • Fang, Y. Y., Jagdish, P. S. and Hansheng, Z., Laser-induced breakdown spectroscopy, elemental analysis. Ency. Anal. Chem. (ed. Meyers, R. A.), Copyright @ John Wiley, 2000, 0066–2087.
  • Knight, A. K., Scherbarth, N. L., Cremers, D. A. and Ferris, M. J., Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc., 2000, 54, 331–339.
  • Wiens, R. C., Arvidson, R. E., Cremers, D. A., Ferris, M. J., Blacic, J. D., Seelos IV, F. P. and Deal, K. S., Combined remote mineralogical and elemental identification from rovers – field and laboratory tests using reflectance and laser-induced breakdown spectroscopy, J. Geophys. Res. (Planets), 2002, 107, 8003; doi:10.1029/2000JE001439.
  • Colao, F. et al., Investigation of LIBS feasibility for in situ planetary exploration: an analysis on martian rock analogues. Planet. Space Sci., 2004, 52, 117–123.
  • Jobin Antony, K., Gurneesh, S. J., Nilesh Vasa, J., Sridhar Raja, V. L. N., Laxmiprasad, A. S., Modelling of laser-induced breakdown spectroscopy for very low pressure conditions, Appl. Phys. A, 2010; doi.org/10.1007/s00339-010-5782-1.
  • Lasue, J. et al., Remote laser induced breakdown spectroscopy (LIBS) for lunar exploration. J. Geophys. Res. Planets, 2012, 117, 1; https://doi.org/10.1029/2011JE003898.
  • Wiens, R. C. et. al., Chemcam science objectives for the mars science laboratory (MSL) rover. Lunar Planet. Sci. XXXVI, 2005, p. 1580.
  • Wiens, R. C., Maurice, S. and the ChemCam team, The ChemCam instrument suite on the Mars science Laboratory Rover curiosity: remote sensing by laser-induced plasmas. Geochem. News, 2011, 145, 41–48.
  • Mylaswamy Annadurai, Alex, T. K., Krishnan, A. and Rama Murali, G. K., Chandrayaan-2 mission: India’s first soft landing mission onto Moon, 63rd International Astronautical Congress, 2012, 12634.
  • Venkatesan Sundararajan, Overview and technical architecture of India's Chandrayaan-2 mission to the Moon. AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, 2018, p. 2178; https://doi.org/10.2514/6.2018-2178.
  • Goswami, J. N. and Annadurai, M., Chandrayaan-1: India’s first planetary science mission to the moon. Curr. Sci., 2009, 96, 486– 491.
  • Amitabh, K., Suresh and Srinivasan, T. P., Potential landing sites for Chandrayaan-2 lander in southern hemisphere of Moon, 49th Lunar and Planetary Science Conference, 2018, 1975.
  • Sridhar Raja, V. L. N., Laxmiprasad, A. S., Adwaita Goswami, Lohar K. A. and Rao, M. V. H., Surya Menon and Kamalakar, J. A., Design, development and performance facets of a prototype laser induced breakdown spectroscope (LIBS) instrument for Chandrayaan-2 rover, 62nd International Astronautical Congress, 2011, IAC-11.A3.2A.10.
  • Laxmiprasad, A. S., Adwaita Goswami, V. L. N. Sridhar Raja, Lohar, K. A., Rao, M. V. H., Monika Mahajan and Bijoy Raha, The LIBS instrument for Chandrayaan-2 rover: engineering model development aspects, 67th International Astronautical Congress, 2016, IAC-16.A3.2B.8.
  • Lerner, J. M., Chambers, R. J. and Passereau, G., ‘Flat field imaging spectroscopy using aberration corrected holographic gratings. Proceedings of the. SPIE 0268, Imaging Spectroscopy I, 1981; doi.org/10.1117/12.959934.
  • Qian Zhou, Jinchao Pang and Kai Ni, A portable flat-field concave grating spectrometer with high resolution. Proceedings of the SPIE 9271, Holography, Diffractive Optics, and Applications VI, 2014, 92711K; doi.org/10.1117/12.2072035.
  • Miziolek, A., Palleschi, V. and Schechter, I., Laser-Induced Breakdown Spectroscopy (LIBS) Fundamental and Applications, Cambridge University Press, New York, 2006.
  • Laxmiprasad, A. S., Sridhar, Raja V. L. N., Surya Menon, Adwaita Goswami, Rao, M. V. H. and Lohar, K. A., An in situ laser induced breakdown spectroscope (LIBS) for Chandrayaan-2 rover: ablation kinetics and emissivity estimations. Adv. Space Res., 2013, 52, 332–341; http://dx.doi.org/10.1016/j.asr.03.021.
  • Ray, C. S., Reis, S. T., Sen, S. and Dell, J. S. O., JSC-1A lunar soil simulant: characterization, glass formation and selected glass properties. J. Non-Cryst. Solids, 2010, 356(44–49), 2369– 2374.

Abstract Views: 392

PDF Views: 141




  • Laser Induced Breakdown Spectroscope on Chandrayaan-2 Rover:A Miniaturized Mid-UV to Visible Active Spectrometer for Lunar Surface Chemistry Studies

Abstract Views: 392  |  PDF Views: 141

Authors

A. S. Laxmiprasad
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
R. V. L. N. Sridhar
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
Adwaita Goswami
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
K. A. Lohar
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
M. V. H. Rao
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
K. V. Shila
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
Monika Mahajan
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
Bijoy Raha
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
T. S. Smaran
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India
B. Krishnamprasad
Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, India

Abstract


Laser Induced Breakdown Spectroscope (LIBS) instrument flown in Chandrayaan-2 mission to the Moon, is one of the scientific instruments on the Pragyaan rover. It is primarily developed to carry out in situ investigations for the elemental composition study of lunar regolith and pebbles on the Moon surface in a previously unexplored high latitude area in the southern polar region. A pulsed laser source, a set of optical lenses and mirrors, an aberrationcorrected concave holographic grating and a linear detector, are the principal electro-optical accessories of the instrument. The developed LIBS is a lightweighted (~1.1 kg) and low power consuming (≤1.2 W) compact instrument. This paper presents the system engineering and development aspects of the LIBS instrument along with results from environmental tests. Performance evaluation of the instrument during endto- end testing is satisfactory and within desired specifications. Details on ground calibration techniques used to evaluate the instrument capability are also presented.

Keywords


Chandrayaan-2 Mission, Laser-Induced Ablation, Moon, Plasma Emission, Spectroscopy.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi4%2F573-581