Open Access Open Access  Restricted Access Subscription Access

Occurrence of Liddicoatite-Bearing LCT Pegmatites in Sirohi Region, Northwest India and their Rare Metal Potentiality


Affiliations
1 Geological Survey of India, Western Region, 15-16 Jhalana Dungri, Jaipur 302 004, India
 

Rare and trace element study of pegmatites around Sibagaon area of Sirohi region, Rajasthan, India revealed that the pegmatites are of rare element class and LCT (Li–Cs–Ta) type. Rare metal concentration in these pegmatites is notably high against crustal abundance, with Li ranging from 1007 to 10785 ppm, Rb from 1285 to 9147 ppm, Cs from 36 to 1142 ppm, Ta from 12 to 386 ppm, Sn from 54.22 to 2283.61 ppm and F from 2724 to 48,275 ppm. Integration of EPMA and LA-ICPMS analyses indicated that the main Li-bearing mineral in pegmatites is lepidolite with Li ranging from 21,599 to 28,178 ppm, which is economically worthwhile to process for Li, followed by elbaite and rare mineral liddicoatite, which has not been reported so far in India. Rare earth element (REE) distribution pattern shows enrichment of LREEs than HREEs, indicating that pegmatites are fractionated and thus causing enrichment of rare metals. This reporting of liddicoatite-bearing LCT pegmatites from Sirohi region with high anomalous values of rare metals can therefore be a good prospect for rare metal exploration in India in the present economic scenario. These pegmatites have indicated a syn-collisional signature and may be related to the accretion of Marwar craton with greater Indian land mass along the Phulad Shear zone.

Keywords

Liddicoatite, Pegmatites, Rare Metals, Trace Elements.
User
Notifications
Font Size

  • de Wall, H., Pandit, M. K., Sharma, K. K., Schöbel, S. and Just, J., Deformation and granite intrusion in the Sirohi area, SW Rajasthan – constraints on Cryogenian to PanAfrican crustal dynamics of NW India. Precambrian Res., 2014, 254, 1–18.
  • Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqballuddin, P. B., Sahai, T. N. and Sharma, S. B., Lithostratigraphic map of Aravalli region. scale 1 : 1,000,000, Geological Survey of India, Calcutta, 1980.
  • Heron, A. M., Geology of Central Rajputana. Mem. Geol. Surv. India, 1953, 79, 339.
  • Just, J., Schulz, B., de Wall, H., Jourdan, F. and Pandit, M. K., Monazite CHIME/EPMA dating of the Erinpuragranitoid deformation: implications for neoproterozoic tectonothermal evolution of NW India. Gondwana Res., 2011, 19, 402–412.
  • Meert, J. and Pandit, M., The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. Mem. Geol. Soc., London, 2015, 43, 29–54.
  • Roy, A. B. and Jakhar, S. R., Geology of Rajasthan (Northwest India), Precambrian to Recent, Scientific Publishers, 2002, p. 412.
  • Singh, Y. K., Waele, B. D., Karmakar, S., Sarkar, S. and Biswal, T. K., Tectonic setting of the Balaram–Kui–Surpagla–Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana assembly. Precambrian Res., 2010, 183, 669–688.
  • Khandelwal, M. K., Jain, R. C., Dash, S. K., Padhi, A. K. and Nanda, L. K., Geological characteristics and ore body modeling of Rohil Uranium Deposit, District Sikar, Rajasthan. Mem. Geol. Soc. India, 2010, 76, 75–85.
  • Scharfenberg, L., de Wall, H., Schöbel, S., Minor, A., Maurer, M., Pandit, M. and Sharma, K., In situ gamma radiation measurements in the Neoproterozoic rocks of Sirohi region, NW India. J. Earth Syst. Sci., 2015, 124, 1223–1234.
  • Somani, O. P., Misra, A., Jeyagopal, A. V., Nanda, L. K. and Parihar, P. S., Radioelemental distribution in Neoproterozoic volcanosedimentary Sindreth Basin, Sirohi District, Rajasthan and its significance. Curr. Sci., 2012, 103(3), 305–309.
  • Ercit, T. S., REE-enriched granitic pegmatites. In Rare Element Geochemistry and Mineral Deposits (eds Linnen, R. L. and Samson, I. M.). Geol. Assoc. Can., Short Course Notes, 2005, vol. 17, pp. 175–199.
  • Chattopadhyay, B., Mukhopadhyay, A. K., Singhai, R. K., Bhattacharjee, J. R. and Hore, R. K., Post Erinpura acid magmatism in Sirohi and its bearing on the tungsten mineralization. In Proceedings of the Symposium Metallogeny of the Precambrian, IGCP, 1982, vol. 91, pp. 115–132.
  • Naik, M. S., The geochemistry and genesis of the granitoids of Sirohi, Rajasthan, India. J. Southeast Asian Earth Sci., 1993, 8(1– 4), 111–115.
  • Srivastava, P. and Sinha, A. K., Geochemical characterization of tungsten-bearing granites from Rajasthan, India. J. Geochem. Exp., 1997, 60, 173–184.
  • United Nations Commodity Trade database, 2016; http://comtrade.un.org/
  • de Wall, H., Pandit, M. K. and Chauhan, N. K., Paleosol at the Archean–Proterozoic contact in Udaipur. Precambrian Res., 2012, 216–219, 120–131.
  • Pandit, M. K., de Wall, H., Daxberger, H., Just, J., Bestmann, M. and Sharma, K. K., Mafic rocks from Erinpura gneiss terrane in the Sirohi region: possible ocean floor remnants in the foreland of the Delhi Fold Belt, NW India. J. Earth Syst. Sci., 2011, 127, 627– 641.
  • Pearce, N. J., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. and Chenery, S. P., A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsl., 1997, 21, 115–144.
  • Foster, M. D., Interpretation of the composition of lithium micas. US Geol. Surv. Prof. Pap., 1960, 354-E.
  • Van Lichtervelde, M., Grégoire, M., Linnen, R., Béziat, D. and Salvi, S., Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contrib. Mineral. Petrol., 2008, 155, 791–806.
  • Yavuz, F., Karakaya, N., Yildirim, D., Çelik Karakaya, M. and Kumral, M., A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). Comput. Geosci., 2014, 63, 70–87.
  • Henry, D. J., Spreadsheet for determining the tourmaline species based on an ordered distribution of elements in the tourmaline formula, 2011; http://www.minsocam.org/msa/ammin/toc/2011/MJ11_Data/Henry_p895_11_TourmalineSpecies.xls
  • Černý, P., Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl. Geochem., 1992, 7, 393–416.
  • Černý, P. and Ercit, T. S., The classification of granitic pegmatites revisited. Can. Mineral., 2005, 43, 2005–2026; 10.2113/gscanmin. 43.6.2005.
  • Černý, P., Meintzer, R. E. and Anderson, A. J., Extreme fractionation in rare-element granitic pegmatites – selected examples of data and mechanisms. Can. Mineral., 1985, 23, 381–421.
  • Küster, D., Romer, R., Tolessa, D., Zerihun, D., Bheemalingeswara, K., Melcher, F. and Oberthür, T., The Kenticha rare-element pegmatite, Ethiopia: internal differentiation, U–Pb age and Ta mineralization. Miner. Deposita, 2009, 44, 723–750.
  • Pearce, J., Harris, N. and Tindle, G. A., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 1984, 25, 956–983.
  • Dunn, P. J., Appleman, D. E. and Nelen, J. E., Liddicoatite, a new calcium end-member of the tourmaline group. Am. Mineral., 1977, 62, 1121–1124.
  • Akizuki, M., Kuribayashi, T., Nagase, T. and Kitikaze, A., Triclinic liddicoatite and elbaite in growth sectors of tourmaline from Madagascar. Am. Mineral., 2001, 86, 364–369.
  • Aurisicchio, C., Demartin, F., Ottolini, L. and Pezzotta, F., Homogeneous liddicoatite from Madagascar: a possible reference material? First EMPA, SIMS and SREF data. Eur. J. Mineral., 1999, 11, 263–280.
  • Dirlam, D. M., Laurs, B. M., Pezzotta, F. and Simmons, W. B., Liddicoatite tourmaline from Anjanabonoina, Madagascar. Gems Gemol., 2002, 38, 28–53.
  • Lele, A. and Bhardwaj, P., Strategic Materials. A Resource Challenge for India, Pentagon Press, Institute for Defence Studies and Analyses, New Delhi, 2014, p. 221, ISBN 978-81-8274-9.
  • Meshram, P., Pandey, B. D. and Mankhand, T. R., Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy, 2014, 150, 192–208.
  • Taylor, S. R., Abundance of chemical elements in the continental crust: a new table. Geochimi. Cosmochim. Acta, 1964, 28(8), 1273–1285.
  • Chatterjee, S., Roy Choudhury, M., Das, S. and Roy, A., Significance and dynamics of the Neoproterozoic (810 Ma) Phulad Shear Zone, Rajasthan, NW India: Neoproterozoic tectonism of PSZ, NW India, Tectonics, 2017; 10.1002/2017TC004554.
  • McDonough, W. and Sun, S. S., The composition of the Earth. Chem. Geol., 1995, 67, 1050–1056.

Abstract Views: 587

PDF Views: 145




  • Occurrence of Liddicoatite-Bearing LCT Pegmatites in Sirohi Region, Northwest India and their Rare Metal Potentiality

Abstract Views: 587  |  PDF Views: 145

Authors

Manideepa Roy Choudhury
Geological Survey of India, Western Region, 15-16 Jhalana Dungri, Jaipur 302 004, India
Nikhil Agarwal
Geological Survey of India, Western Region, 15-16 Jhalana Dungri, Jaipur 302 004, India
Suresh Chander
Geological Survey of India, Western Region, 15-16 Jhalana Dungri, Jaipur 302 004, India

Abstract


Rare and trace element study of pegmatites around Sibagaon area of Sirohi region, Rajasthan, India revealed that the pegmatites are of rare element class and LCT (Li–Cs–Ta) type. Rare metal concentration in these pegmatites is notably high against crustal abundance, with Li ranging from 1007 to 10785 ppm, Rb from 1285 to 9147 ppm, Cs from 36 to 1142 ppm, Ta from 12 to 386 ppm, Sn from 54.22 to 2283.61 ppm and F from 2724 to 48,275 ppm. Integration of EPMA and LA-ICPMS analyses indicated that the main Li-bearing mineral in pegmatites is lepidolite with Li ranging from 21,599 to 28,178 ppm, which is economically worthwhile to process for Li, followed by elbaite and rare mineral liddicoatite, which has not been reported so far in India. Rare earth element (REE) distribution pattern shows enrichment of LREEs than HREEs, indicating that pegmatites are fractionated and thus causing enrichment of rare metals. This reporting of liddicoatite-bearing LCT pegmatites from Sirohi region with high anomalous values of rare metals can therefore be a good prospect for rare metal exploration in India in the present economic scenario. These pegmatites have indicated a syn-collisional signature and may be related to the accretion of Marwar craton with greater Indian land mass along the Phulad Shear zone.

Keywords


Liddicoatite, Pegmatites, Rare Metals, Trace Elements.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi5%2F809-818