Open Access Open Access  Restricted Access Subscription Access

Petrogenesis of the Palaeoarchean Keonjhar Granite, Singhbhum Craton, India: Product of Crustal Reworking or Subduction?


Affiliations
1 CSIR-National Geophysical Research Institute, Hyderabad 500 007, India
 

The early Archean represents an important eon in the evolution of the earth’s continental crust and could provide insights into the nature of geodynamic processes that operated during that period. The Singhbhum Craton from the Indian Shield is the only major archive of Palaeo–Mesoarchean geological processes. The Palaeoarchean granitoids from the Keonjhar area of Singhbhum Craton are potassic granites and granodiorites of calcalkaline affinity. Their age and elemental concentrations resemble the low Al2O3granites reported from the Eastern Pilbara Craton of Australia. The geochemical systematics of these granitoids suggests their derivation due to crustal reworking involving partial melting of a tonalitic source, possibly older metamorphic tonalitic gneiss (OMTG). The OMTG could have been derived due to the melting of an enriched basaltic source at the base of an oceanic plateau. In the second stage, the resultant underplating at crustal levels caused the reworking that led to intracrustal melting and differentiation of OMTG to form potassic granites, similar to that of Keonjhar pluton. Consolidating the evidences from the available geochemical and isotopic studies with our own data and correlating them with the geophysical evidences, we interpret that the Keonjhar granitoids are the product of intracrustal melting in an oceanic plateau setting.

Keywords

Geodynamic Processes, Granitoids, Intracrustal Melting, Petrogenesis.
User
Notifications
Font Size

  • Dhuime, B., Hawkesworth, C. J., Cawood, P. A. and Storey, C. D., A change in the geodynamics of continental growth 3 billion years ago. Science, 2012, 335, 1334–1336.
  • Belousova, E., Kostitsyn, Y., Griffin, W. L., Begg, G. C., O’Reilly, S. Y. and Pearson, N. J., The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos, 2010, 119, 457–466.
  • Polat, A., Hofmann, A. and Rosing, M. T., Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, west Greenland: geo-chemical evidence for intraoceanic subduction zone processes in the early earth. Chem. Geol., 2002, 184, 231–254.
  • Komiya, T., Maruyama, S., Masuda, T., Nohda, S., Hayashi, M. and Okamoto, K., Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southern west Greenland. J. Geol., 1999, 107, 515–554.
  • Nutman, A. P. and Collerson, K. D., Very early Archean crustal– accretion complexes preserved in the north Atlantic craton. Geology, 1991, 19, 791–794.
  • Shirey, S. B. and Richardson, S. H., Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 2011, 333, 434–436.
  • Condie, K. C. and Kröner, A., When did plate tectonics begin? Evidence from the geologic record. In Special Paper of the Geological Society of America(eds Condie, K. C. and Pease, V.), 2008, pp. 281–294.
  • Moyen, J. F., Stevens, G. and Kisters, A., Record of mid-archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature, 2006, 442, 559–562.
  • Smithies, R. H., Champion, D. C., Van Kranendonk, M. J., Howard, H. M. and Hickman, A. H., Modern-style subduction processes in the Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intraoceanic arc. Earth Planet. Sci. Lett., 2005, 231, 221–237.
  • Hawkesworth, C., Cawood, P., Kemp, T., Storey, C. and Dhuime, B., Geochemistry: a matter of preservation. Science, 2009, 323, 49–50.
  • Scholl, D. W. and von Huene, R., Crustal recycling at modern subduction zones applied to the past – issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol. Soc. America Mem., 2007, 200, 9–32.
  • Condie, K. C., Mantle Plumes and their Record in Earth History, Cambridge University Press, Cambridge, UK, 2001, pp. 170– 246.
  • Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H. and Champion, D. C., Review: secular tectonic evolution of archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, 2007, 19, 1–38.
  • Smithies, R. H., Champion, D. C. and Van Kranendonk, M. J., Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet. Sci. Lett., 2009, 281, 298–306.
  • Bédard, J. H., Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Frontiers, 2018, 9, 19–49.
  • Van Kranendonk, M. J., Two types of Archean continental crust: plume and plate tectonics on early earth. Am. J. Sci., 2010, 310, 1187–1209.
  • Laurent, O., Martin, H., Moyen, J. F. and Doucelance, R., The diversity and evolution of late-Archean granitoids: evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga. Lithos, 2014, 205, 208–235.
  • Kamber, B. S., The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res., 2015, 258, 48–82.
  • Saha, A. K., M-27. Crustal evolution of Singhbhum – North Orissa, Eastern India, Memoir, Geological Society of India, Bangalore, India, 1994, vol. 27, pp. 1–341.
  • Mukhopadhyay, D., The Archaean nucleus of Singhbhum: the present state of knowledge. Gondwana Res., 2001, 4, 307–318.
  • Goswami, J. N., Mishra, S., Wiedenbeck, M., Ray, S. L. and Saha, A. K., 3.55 Ga old zircon from Singhbhum–Orissa Iron Ire Craton, eastern India. Curr. Sci., 1995, 69, 1008–1011.
  • Hofmann, A. and Mazumder, R., A review of the current status of the older metamorphic group and older metamorphic tonalite gneiss: insights into the Palaeoarchaean history of the Singhbhum Craton, India. Geol. Soc., London, Mem., 2015, 43, 103–107.
  • Mukhopadhyay, J., Beukes, N. J., Armstrong, R. A., Zimmermann, U., Ghosh, G. and Medda, R. A., Dating the oldest green-stone in India: a 3.51-Ga precise U–Pb shrimp zircon age for dacitic lava of the southern iron ore group, Singhbhum Craton. J. Geol., 2008, 116, 449–461.
  • Mukhopadhyay, J., Ghosh, G., Zimmermann, U., Guha, S. and Mukherjee, T., A 3.51 Ga bimodal volcanics–BIF–ultramafic succession from Singhbhum Craton: implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geochem. J.,2012, 47, 284–311.
  • Nelson, D. R., Bhattacharya, H. N., Thern, E. R. and Altermann, W., Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India. Precambrian Res., 2014, 255, 412–432.
  • Dey, S., Topno, A., Liu, Y. and Zong, K., Generation and evolution of Paleoarchean continental crust in the central part of the Singhbhum Craton, eastern India. Precambrian Res., 2017, 298, 268–291.
  • Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K. and Berndt, J., Magmatic and metamorphic history of paleoarchean tonalite–trondhjemite–granodiorite (TTG) suite from the Singhbhum Craton, eastern India. Precambrian Res., 2014, 252, 180–190.
  • Acharyya, S. K., Gupta, A. and Orihashi, Y., New U–Pb zircon ages from paleo-mesoarchean ttg gneisses of the Singhbhum Craton, eastern India. Geochem. J.,2010, 44, 81–88.
  • Tait, J., Zimmermann, U., Miyazaki, T., Presnyakov, S., Chang, Q., Mukhopadhyay, J. and Sergeev, S., Possible juvenile palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum Craton. Geol. Mag., 2011, 148, 340–347.
  • Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M. and Liu, D., Evidence of enriched, Hadean mantle reservoir from 4.2–4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, eastern India. Sci. Rep., 2018, 8, 7069.
  • Miller, S. R., Mueller, P. A., Meert, J. G., Kamenov, G. D., Pivarunas, A. F., Sinha, A. K. and Pandit, M. K., Detrital zircons reveal evidence of Hadean crust in the Singhbhum Craton, India. J. Geol., 2018, 126, 541–552.
  • Kumar, A., Parashuramulu, V., Shankar, R. and Besse, J., Evidence for a Neoarchean lip in the Singhbhum Craton, eastern India: implications to Vaalbara supercontinent. Precambrian Res., 2017, 292, 163–174.
  • Shankar, R., Vijayagopal, B. and Kumar, A., Precise Pb–Pb bad-deleyite ages of 1765 Ma for a Singhbhum ‘newer dolerite’ dyke swarm. Curr. Sci., 2014, 106, 1306–1310.
  • Krishna, A., Murthy, N. and Govil, P., Multielement analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. At. Spectrosc.-Norwalk Connecticut, 2007, 28, 202.
  • Satyanarayanan, M., Balaram, V., Sawant, S., Subramanyam, K., Krishna, G. V., Dasaram, B. and Manikyamba, C., Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. At. Spectrosc., 2018, 39, 1–15.
  • Páez, G., Ruiz, R., Guido, D., Jovic, S. and Schalamuk, I., The effects of K-metasomatism in the Bahía Laura volcanic complex, Deseado massif, Argentina: petrologic and metallogenic consequences. Chem. Geol., 2010, 273, 300–313.
  • Shand, S. J., Eruptive Rocks, Thomas Murphy, 1947, p. 444.
  • Barker, F., Trondhjemite: definition, environment and hypotheses of origin. In Developments in Petrology(ed. Barker, F.), Elsevier, 1979, pp. 1–12.
  • Rapp, R. P., Shimizu, N., Norman, M. and Applegate, G., Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem. Geol., 1999, 160, 335–356.
  • Sun, S. S. and McDonough, W. F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in Ocean Basins(eds Saunders, A. D. and Norry, M. J.), Geological Society of London, UK, 1989, vol. 42, pp. 313–345.
  • Bickle, M. J., Bettenay, L. F., Chapman, H. J., Groves, D. I., McNaughton, N. J., Campbell, I. H. and de Laeter, J. R., Origin of the 3500–3300 Ma calc–alkaline rocks in the Pilbara Archaean: isotopic and geochemical constraints from the Shaw batholith. Precambrian Res., 1993, 60, 117–149.
  • Champion, D. C. and Smithies, R. H., Geochemistry of Paleoarchean granites of the east Pilbara terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth. In Earth’s Oldest Rocks(eds Van Kranendonk, M. J., Hugh Smithies, R. and Bennett, V. C.), Developments in Precambrian Geology, Elsevier, 2008, vol. 15, pp. 369–409.
  • Rudnick, R. L. and Fountain, D. M., Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 1995, 33, 267–309.
  • Condie, K. C., High field strengthelement ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 2005, 79, 491–504.
  • Willbold, M., Hegner, E., Stracke, A. and Rocholl, A., Continental geochemical signatures in Dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet. Sci. Lett., 2009, 279, 44–52.
  • Moyen, J.-F., High Sr/Y and La/Yb ratios: the meaning of the ‘adakitic signature’. Lithos, 2009, 112, 556–574.
  • Gardiner, N. J., Hickman, A. H., Kirkland, C. L., Lu, Y., Johnson, T. and Zhao, J.-X., Processes of crust formation in the early earth imaged through Hf isotopes from the East Pilbara terrane. Precambrian Res., 2017, 297, 56–76.
  • Manikyamba, C., Ray, J., Ganguly, S., Singh, M. R., Santosh, M., Saha, A. and Satyanarayanan, M., Boninitic metavolcanic rocks and island arc tholeiites from the older metamorphic group (OMG) of Singhbhum Craton, eastern India: geochemical evidence for Archean subduction processes. Precambrian Res., 2015, 271, 138– 159.
  • Mukhopadhyay, J., Beukes, N., Armstrong, R., Zimmermann, U., Ghosh, G. and Medda, R., Dating the oldest greenstone in India: a 3.51 Ga precise U–Pb shrimp zircon age for dacitic lava of the southern iron ore group, Singhbhum Craton. J. Geol., 2008, 116, 449–461.
  • Sengupta, S., Acharyya, S. and DeSmeth, J., Geochemistry of Archaean volcanic rocks from iron ore supergroup, Singhbhum, eastern India. Proc. Indian Acad. Sci. – Earth Planet. Sci., 1997, 106, 327.
  • Chaudhuri, T., Mazumder, R. and Arima, M., Petrography and geochemistry of Mesoarchean komatiites from the eastern iron ore belt, Singhbhum Craton, India, and its similarity with ‘barberton type komatiite’. J. Afr. Earth Sci., 2015, 101, 135–147.
  • Collins, W. J., Van Kranendonk, M. J. and Teyssier, C., Partial convective overturn of Archaean crust in the east Pilbara Craton, western Australia: driving mechanisms and tectonic implications. J. Struct. Geol., 1998, 20, 1405–1424.
  • Wiemer, D., Schrank, C. E., Murphy, D. T., Wenham, L. and Allen, C. M., Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nature Geosci., 2018, 11, 357–361.
  • Prabhakar, N. and Bhattacharya, A., Paleoarchean partial convective overturn in the Singhbhum Craton, eastern India. Precambrian Res., 2013, 231, 106–121.
  • Mandal, P. and Biswas, K., Teleseismic receiver functions modeling of the eastern Indian Craton. Phys. Earth Planet. Inter., 2016, 258, 1–14.
  • Bhattacharya, B. B., The electric moho underneath eastern Indian Craton. Geophys. Res. Lett., 2002, 29, 14-1–14-4.
  • Streckeisen, A., To each plutonic rock its proper name. Earth Sci. Rev., 1976, 12, 1–33.

Abstract Views: 282

PDF Views: 91




  • Petrogenesis of the Palaeoarchean Keonjhar Granite, Singhbhum Craton, India: Product of Crustal Reworking or Subduction?

Abstract Views: 282  |  PDF Views: 91

Authors

Ajay Dev Asokan
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India
Kumar Krishna
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India
R. Elangovan
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India
M. Ram Mohan
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India

Abstract


The early Archean represents an important eon in the evolution of the earth’s continental crust and could provide insights into the nature of geodynamic processes that operated during that period. The Singhbhum Craton from the Indian Shield is the only major archive of Palaeo–Mesoarchean geological processes. The Palaeoarchean granitoids from the Keonjhar area of Singhbhum Craton are potassic granites and granodiorites of calcalkaline affinity. Their age and elemental concentrations resemble the low Al2O3granites reported from the Eastern Pilbara Craton of Australia. The geochemical systematics of these granitoids suggests their derivation due to crustal reworking involving partial melting of a tonalitic source, possibly older metamorphic tonalitic gneiss (OMTG). The OMTG could have been derived due to the melting of an enriched basaltic source at the base of an oceanic plateau. In the second stage, the resultant underplating at crustal levels caused the reworking that led to intracrustal melting and differentiation of OMTG to form potassic granites, similar to that of Keonjhar pluton. Consolidating the evidences from the available geochemical and isotopic studies with our own data and correlating them with the geophysical evidences, we interpret that the Keonjhar granitoids are the product of intracrustal melting in an oceanic plateau setting.

Keywords


Geodynamic Processes, Granitoids, Intracrustal Melting, Petrogenesis.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi6%2F910-919