Open Access Open Access  Restricted Access Subscription Access

Macrocycles of Axially Chiral and Racemic N-Heterocyclic Carbene Silver(I), Gold(I) and Palladium(II) Complexes: Synthesis, Characterization and Computational Structures


Affiliations
1 Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
 

In this study, Ag(I), Au(I) and Pd(II) bis-N-hetero-cyclic carbene (NHC) complexes derived from axially chiral R-1,1′-binaphthyl-2,2′-diol (R-BINOL) and racemic biphenyl-2,2′-diol scaffolds have been synthe-sized. The metallation of these bis-imidazolium and bis-triazolium types of ligand precursors of R-BINOL and biphenol unit, viz. (1–4)d has been achieved using standard procedure. The {[L(L′-NHC)2]Ag}Cl-type, chiral (1–2)e and racemic (3–4)e complexes have been obtained by the treatment of ligand with Ag2O. Similarly, chiral Pd(II) (1f) and Au(I) (1g) complexes have been synthesized and analysed using spectroscopic techniques. The geometry-optimized structures obtained through the density functional theory display good proximity with the reported X-ray structures of similar type of Ag(I), AAu(I) and Pd(II) complexes.

Keywords

Axial Chirality, Density Functional Theory, Ligands, Racemic Complex.
User
Notifications
Font Size

  • Whitesell, J. K., C2 symmetry and asymmetric induction. Chem. Rev., 1989, 89, 1581–1590.
  • Cesar, V., Bellemin-Laponnaz, S.and Gade, L. H., Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chem. Soc. Rev., 2004, 33, 619–636.
  • Brunel, J. M., BINOL: a versatile chiral reagent. Chem. Rev., 2005, 105, 857–898.
  • Myers, R. T., Thermodynamics of chelation. Inorg. Chem., 1978, 17, 952–958.
  • Corberán, R., Mas-Marzá, E. and Peris, E., Mono-, bi- and tridentate N-heterocyclic carbene ligands for the preparation of transition-metal-based homogeneous catalysts. Eur. J. Inorg. Chem., 2009, 2009, 1700–1716.
  • Clyne, D. S., Jin, J., Genest, E., Gallucci, J. C. and Rajan Babu, T. V., First chelated chiral N-heterocyclic bis-carbene complexes. Org. Lett., 2000, 2, 1125–1128.
  • Liu, L.-J., Wang, F., Wang, W., Zhao, M.-X. and Shi, M., Synthe-sis of chiral mono(N-heterocyclic carbene) palladium and gold complexes with a 1,1′-biphenyl scaffold and their applications in catalysis. Beilstein J. Org. Chem., 2011, 7, 555–564.
  • Yang, J., Zhang, R., Wang, W., Zhang, Z. and Shi, M., Axially chiral N-heterocyclic carbene gold(I) complex catalyzed asymmetric Friedel–Crafts/cyclization reaction of nitrogen-tethered 1,6-enynes with indole derivatives. Tetrahedron: Asymmetry, 2011, 22, 2029–2038.
  • Sun, Y.-W., Xu, Q. and Shi, M., Synthesis of axially chiral gold complexes and their applications in asymmetric catalyses. Beilstein J. Org. Chem., 2013, 9, 2224–2232.
  • Van Veldhuizen, J. J., Gillingham, D. G., Garber, S. B., Kataoka, O. and Hoveyda, A. H., Chiral Ru-based complexes for asymmetric olefin metathesis: enhancement of catalyst activity through steric and electronic modifications. J. Am. Chem. Soc., 2003, 125, 12502–12508.
  • Larsen, A. O., Leu, W., Oberhuber, C. N., Campbell, J. E. and Hoveyda, A. H., Bidentate NHC-based chiral ligands for efficient Cu-catalyzed enantioselective allylic alkylations: structure and activity of an air-stable chiral Cu complex. J. Am. Chem. Soc., 2004, 126, 11130–11131.
  • Wu, H., Jin, C., Huang, G., Wang, L., Jiang, J. and Wang, L., Binaphthyl-bridged bis-imidazolinium salts as N-heterocyclic carbene ligand precursors in the palladium-catalyzed Heck reaction. Sci. China Chem., 2011, 54, 951–956.
  • Xu, Q., Zhang, R., Zhang, T. and Shi, M., Asymmetric 1,4-addition of arylboronic acids to 2,3-dihydro-4-pyridones catalyzed by axially chiral NHC–Pd(II) complexes. J. Org. Chem., 2010, 75, 3935–3937.
  • Garber, S. B., Kingsbury, J. S., Gray, B. L. and Hoveyda, A. H., Efficient and recyclable monomeric and dendritic Ru-based meta-thesis catalysts. J. Am. Chem. Soc., 2000, 122, 8168–8179.
  • Scarborough, C. C., McDonald, R. I., Hartmann, C., Sazama, G. T., Bergant, A. and Stahl, S. S., Steric modulation of chiral biaryl diamines via Pd-catalyzed directed C–H arylation. J. Org. Chem., 2009, 74, 2613–2615.
  • Zhang, T. and Shi, M., Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands: highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones. Chem. Eur. J., 2008, 14, 3759–3764.
  • Perry, M. C. and Burgess, K., Chiral N-heterocyclic carbene-transition metal complexes in asymmetric catalysis. Tetrahedron: Asymmetry, 2003, 14, 951–961.
  • Telfer, S. G. and Kuroda, R., 1,1′-Binaphthyl-2,2′-diol and 2,2′-diamino-1,1′-binaphthyl: versatile frameworks for chiral ligands in coordination and metallosupramolecular chemistry. Coord. Chem. Rev., 2003, 242, 33–46.
  • Chen, J. and Huang, Y., Asymmetric catalysis with N-heterocyclic carbenes as non-covalent chiral templates. Nature Commun., 2014, 5, 3437–3444.
  • Herrmann, W. A., Goossen, L. J., Köcher, C. and Artus, G. R. J., Chiral heterocylic carbenes in asymmetric homogeneous catalysis. Angew. Chem., Int. Ed., 1996, 35, 2805–2807.
  • Banerjee, D., Buzas, A. K., Besnard, C. and Kündig, E. P., Chiral N-heterocyclic carbene gold complexes: synthesis, properties, and application in asymmetric catalysis. Organometallics, 2012, 31, 8348–8354.
  • Wang, F., Liu, L.-J., Wang, W., Li, S. and Shi, M., Chiral NHC– metal-based asymmetric catalysis. Coord. Chem. Rev., 2012, 256, 804–853.
  • Pu, L., 1,1′-binaphthyl dimers, oligomers and polymers: molecular recognition, asymmetric catalysis and new materials. Chem. Rev., 1998, 98, 2405–2494.
  • Wang, Y.-M., Kuzniewski, C. N., Rauniyar, V., Hoong, C. and Toste, F. D., Chiral (acyclic diaminocarbene) gold(I)-catalyzed dynamic kinetic asymmetric transformation of propargyl esters. J. Am. Chem. Soc., 2011, 133, 12972–12975.
  • Cisnetti, F. and Gautier, A., Metal/N-heterocyclic carbene complexes: opportunities for the development of anticancer metallo-drugs. Angew. Chem. Int. Ed., 2013, 52, 11976–11978.
  • Belenkii, L. I. and Chuvylkin, N. D., Relationships and features of electrophilic substitution reactions in the azole series. Chem. He-terocycl. Compd., 1996, 32, 1319–1343.
  • Brandys, M.-C., Jennings, M. C. and Puddephatt, R. J., Luminescent gold(I) macrocycles with diphosphine and 4,4[prime or minute]-bipyridyl ligands. J. Chem. Soc., Dalton Trans., 2000, 4601–4606; doi:10.1039/B005251P.
  • Grill, J. M., Reibenspies, J. H. and Miller, S. A., Racemic and chiral expanded salen-type complexes derived from biphenol and binaphthol: salbip and salbin. J. Organomet. Chem., 2005, 690, 3009–3017.
  • Frisch, M. J. T. et al., J Gaussian 09, Revision A1, Aussian, Inc., Wallingford CT, 2009.
  • Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38, 3098– 3100.
  • Lee, C., Yang, W. and Parr, R. G., Development of the Colle– Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785–789.
  • Hehre, W. J., Ditchfield, R. and Pople, J. A., Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys., 1972, 56, 2257–2261.
  • Petersson, G. A. and Al‐Laham, M. A., A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J. Chem. Phys., 1991, 94, 6081–6090.
  • Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al‐Laham, M. A., Shirley, W. A. and Mantzaris, J., A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J. Chem. Phys., 1988, 89, 2193–2218.
  • Dolg, M., Wedig, U., Stoll, H. and Preuss, H., Energy‐adjusted ab initiopseudopotentials for the first row transition elements. J. Chem. Phys., 1987, 86, 866–872.
  • Andrae, D., Häußermann, U., Dolg, M., Stoll, H. and Preuß, H., Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta, 1990, 77, 123– 141.
  • Alkauskas, A., Baratoff, A. and Bruder, C., Gaussian form of effective core potential and response function basis set derived from Troullier−Martins pseudopotential: results for Ag and Au. J. Phys. Chem. A, 2004, 108, 6863–6868.
  • Wang, X. and Andrews, L., Gold hydrides AuH and (H2) AuH and the AuH3transition state stabilized in (H2) AuH3: infrared spectra and DFT calculations. J. Am. Chem. Soc., 2001, 123, 12899– 12900.
  • Faza, O. N., López, C. S., Álvarez, R. and de Lera, A. R., Mechanism of the gold(I)-catalyzed Rautenstrauch rearrangement: a center-to-helix-to-center chirality transfer. J. Am. Chem. Soc., 2006, 128, 2434–2437.
  • Lan, Y., Wang, C., Sowa, J. R. and Wu, Y.-D., A theoretical investigation on the mechanism of a palladium-mediated formal 6πelectrocyclic synthesis of 9,10-dihydrophenanthrenes. J. Org. Chem., 2010, 75, 951–954.
  • Perez, J., Espinosa, A., Galiana, J. M., Perez, E., Serrano, J. L., Aranda, M. A. G. and Insausti, M., Orthogonal non-covalent bind-ing forces in solid state supramolecular herringbone-shaped ‘interlocked dimers’. Pseudopolymorphism in [(ppy)Pd([small mu]-pz)]2 (ppy = 2-(2-pyridyl)phenyl, pz = pyrazol-1-yl) com-plex. Dalton Trans., 2009, 9625–9636; doi:10.1039/B910502F.
  • Nimlos, M. R., Chang, C. H., Curtis, C. J., Miedaner, A., Pilath, H. M. and DuBois, D. L., Calculated hydride donor abilities of five-coordinate transition metal hydrides [HM(diphosphine)2]+ (M = Ni, Pd, Pt) as a function of the bite angle and twist angle of diphosphine ligands. Organometallics, 2008, 27, 2715–2722.
  • Álvarez, R., Faza, O. N., López, C. S. and de Lera, Á. R., Computational characterization of a complete palladium-catalyzed cross-coupling process: the associative transmetalation in the stille reaction. Org. Lett., 2006, 8, 35–38.
  • Ray, L., Katiyar, V., Raihan, M. J., Nanavati, H., Shaikh, M. M. and Ghosh, P., First example of a gold(I) N-heterocyclic-carbene-based initiator for the bulk ring-opening polymerization of L-lactide. Eur. J. Inorg. Chem., 2006, 2006, 3724–3730.
  • Dash, C., Shaikh, M. M., Butcher, R. J. and Ghosh, P., Highly convenient regioselective intermolecular hydroamination of alkynes yielding ketimines catalyzed by gold(I) complexes of 1,2,4-triazole based N-heterocyclic carbenes. Inorg. Chem., 2010, 49, 4972–4983.
  • Ray, S., Mohan, R., Singh, J. K., Samantaray, M. K., Shaikh, M. M., Panda, D. and Ghosh, P., Anticancer and antimicrobial metal-lopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc., 2007, 129, 15042–15053.
  • Wang, H. M. J. and Lin, I. J. B., Facile synthesis of silver(I)−carbene complexes. Useful carbene transfer agents. Orga-nometallics, 1998, 17, 972–975.
  • Guo, S., Sivaram, H., Yuan, D. and Huynh, H. V., Gold and palladium hetero-bis-NHC complexes: characterizations, correlations, and ligand redistributions. Organometallics, 2013, 32, 3685–3696.
  • Liu, Q.-X., Huo, R., Liu, J., Wei, Q., Zhao, X.-J. and Zhao, Z.-X., NHC tetranuclear silver(I) complexes and intramolecular extended π–πinteractions. Organometallics, 2015, 34, 3167–3174.
  • Li, X.-L. et al., Synthesis, crystal structure, chiroptical and ferro-electric properties of a multifunctional chiral silver(I) complex based on the chiral bis-bidentate bridging ligand. Inorg. Chim. Acta, 2016, 444, 221–225.
  • Duan, W., Ma, Y., He, F., Zhao, L., Chen, J. and Song, C., Synthesis of novel planar chiral Ag and Rh N-heterocyclic carbene complexes derived from [2.2]paracyclophane and their application in ultrasound assisted asymmetric addition reactions of organoboronic acids to aldehydes. Tetrahedron: Asymmetry, 2013, 24, 241– 248.
  • Ray, L., Katiyar, V., Barman, S., Raihan, M. J., Nanavati, H., Shaikh, M. M. and Ghosh, P., Gold(I) N-heterocyclic carbene based initiators for bulk ring-opening polymerization of L-lactide. J. Organomet. Chem., 2007, 692, 4259–4269.
  • Uemura, M., Watson, I. D. G., Katsukawa, M. and Toste, F. D., Gold(I)-catalyzed enantioselectivesynthesis of benzopyrans via rearrangement of allylic oxonium intermediates. J. Am. Chem. Soc., 2009, 131, 3464–3465.
  • Zhang, X., Gu, S., Xia, Q. and Chen, W., New structural motifs of silver and gold complexes of pyridine-functionalized benzimida-zolylidene ligands. J. Organomet. Chem., 2009, 694, 2359–2367.
  • Serebryanskaya, T. V., Zolotarev, A. A. and Ott, I., A novel aminotriazole-based NHC complex for the design of gold(I) anti-cancer agents: synthesis and biological evaluation. Med. Chem. Commun., 2015, 6, 1186–1189.
  • Wang, W., Zhang, T. and Shi, M., Chiral bis(NHC)–palladium(II) complex catalyzed and diethylzinc-mediated enantioselectiveumpolung allylation of aldehydes. Organometallics, 2009, 28, 2640–2642.
  • Liu, Q.-X., Wang, H., Zhao, X.-J., Yao, Z.-Q., Wang, Z.-Q., Chen, A.-H. and Wang, X.-G., N-heterocyclic carbene silver(I), palladium(II) and mercury(II) complexes: synthesis, structural studies and catalytic activity. CrystEngComm., 2012, 14, 5330–5348.
  • Gupta, S., Basu, B. and Das, S., Benzimidazole-based palladium– N-heterocyclic carbene: a useful catalyst for C–C cross-coupling reaction at ambient condition. Tetrahedron, 2013, 69, 122–128.
  • Li, Y., Tang, J., Gu, J., Wang, Q., Sun, P. and Zhang, D., Chiral 1,2-cyclohexane-bridged bis-NHC palladium catalysts for asymmetric Suzuki–Miyaura coupling: synthesis, characterization, and steric effects on enantiocontrol. Organometallics, 2014, 33, 876– 884.
  • Jothibasu, R., Huynh, H. V. and Koh, L. L., Au(I) and Au(III) complexes of a sterically bulky benzimidazole-derived N-heterocyclic carbine.J. Organomet. Chem., 2008, 693, 374–380.

Abstract Views: 259

PDF Views: 76




  • Macrocycles of Axially Chiral and Racemic N-Heterocyclic Carbene Silver(I), Gold(I) and Palladium(II) Complexes: Synthesis, Characterization and Computational Structures

Abstract Views: 259  |  PDF Views: 76

Authors

Sonali Ramgopal Mahule
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

Abstract


In this study, Ag(I), Au(I) and Pd(II) bis-N-hetero-cyclic carbene (NHC) complexes derived from axially chiral R-1,1′-binaphthyl-2,2′-diol (R-BINOL) and racemic biphenyl-2,2′-diol scaffolds have been synthe-sized. The metallation of these bis-imidazolium and bis-triazolium types of ligand precursors of R-BINOL and biphenol unit, viz. (1–4)d has been achieved using standard procedure. The {[L(L′-NHC)2]Ag}Cl-type, chiral (1–2)e and racemic (3–4)e complexes have been obtained by the treatment of ligand with Ag2O. Similarly, chiral Pd(II) (1f) and Au(I) (1g) complexes have been synthesized and analysed using spectroscopic techniques. The geometry-optimized structures obtained through the density functional theory display good proximity with the reported X-ray structures of similar type of Ag(I), AAu(I) and Pd(II) complexes.

Keywords


Axial Chirality, Density Functional Theory, Ligands, Racemic Complex.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi7%2F1035-1041