Open Access
Subscription Access
Parameter Uncertainty in HEC-RAS 1D CSU Scour Model
The predictive capability of a model is dependent on the parameter uncertainty involved in it. This study examines the effect of predictive uncertainty and parameter sensitivity in the application of the well-known HEC-RAS 1D hydrodynamic CSU (Colorado State University) scour prediction model. Correlation-based technique was used for carrying out the sensitivity analysis. Monte Carlo method was adopted for uncertainty quantification. The methodology suggested in the present study drastically improved the predictive capability of the model, by reducing the model error from 26.6% to 0.07%. In general, it improved the predictive capability of any scour model when tested on 19 datasets.
Keywords
Hydrodynamic Model, Parameter Uncertainty, Scour, Prediction, Sensitivity Analysis.
User
Font Size
Information
- Breusers, H. N., Nicollet, G. and Shen, H. W., Local scour around cylindrical piers. J. Hydrol. Res., 1977, 15(3), 211–252.
- Kumar, D., Yadav, H. L. and Himanshu, S. K., Estimation of scour depth around bridge piers by Using HEC-RAS. RACE-2011, 2011, pp. 421–425.
- Kothyari, U. C., Garde, R. J. and Ranga Raju, K. G., Temporal variation of scour around circular bridge piers. J. Hydraul. Eng., ASCE, 1992, 118(8), 1091–1106.
- Froehlich, D. C., Analysis of onsite measurements of scour at piers. In American Society of Civil Engineers National Conference on Hydraulic Engineering, Colorado Springs, CO, USA, 1988, pp. 534–539.
- Jain, S. C. and Fischer, E. E., Scour around circular piers at high Froude numbers. Report No. FHWA-RD-79-104, US Department of Transportation, Federal Highway Administration, Washington, DC, USA, 1979.
- Lacey, G., Stable channels in alluvium (includes appendices). In Minutes of the Proceedings of the Institution of Civil Engineers, 1930, vol. 229, pp. 259–292.
- Melville, B. W., Pier and abutment scour: integrated approach. J. Hydraul. Eng., ASCE, 1997, 123(2), 125–136.
- Richardson, E. V. and Davis, S. R., Evaluating scour at bridges. Hydraulic Engineering CircularNo. 18(HEC-18), Report No. FHWA NHI 01–001, US Departmentof Transportation, Federal Highway Administration, Washington, DC, USA, 2001.
- Landers, M. N. and Mueller, D. S., Channel scour at bridges in the United States, Report No. FHWA-RD-95-184, 1996.
- Mohamed, T. A., Pillai, S., Noor, M. J. M. M., Ghazali, A. H., Huat, G. B. K. and Yusuf, B., Validation of some bridge pier scour formulae and models using field data. J. King Saud Univ., Eng. Sci., 2006, 19(1), 31–41.
- Johnson, P. A., Comparison of pierscour equations using field data. J. Hydraul. Eng., ASCE, 1995, 121(8), 626–629.
- Kuczera, G. and Parent, E., Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J. Hydrol., 1998, 211, 69–85.
- Shamsudin, S., Dan’azumi, S. and Ab Rahman, A., Uncertainty analysis of HEC-HMS model parameters using Monte Carlo simulation. Int. J. Modell. Simul., 2011, 31(4), 279–286.
- Beven, K. and Binley, A., The future of distributed models: model calibration and uncertainty prediction. Hydrol. Proc., 1992, 6, 279–298; doi:10.1002/hyp.3360060305.
- Montanari, A. and Brath, A., A stochastic approach for assessing the uncertainty of rainfall‐runoff simulations. Water Resour. Res., 2004, 40(1), 1–11.
- Maskey, S., Guinot, V. and Price, R. K., Treatment of precipitation uncertainty in rainfall-runoff modelling: a fuzzy set approach. Adv. Water Resour., 2004, 27(9), 889–898.
- Shrestha, D. L., Kayastha, N. and Solomatine, D. P., A novel approach to parameter uncertainty analysis of hydrological models using neural networks. Hydrol. Earth Syst. Sci., 2009, 13(7), 1235.
- Pappenberger, F. and Beven, K. J., Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour. Res., 2006, 42(5), 1–8.
- Wurbs, R. A., Computer Models for Water Resources Planning and Management, National Study of Water Management during Drought, Diane Publishing, 1997.
- Uhlenbrook, S., Seibert, J. A. N., Leibundgut, C. and Rodhe, A., Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure. Hydrol. Sci. J., 1999, 44(5), 779–797.
- Brunner, G. W., HEC-RAS River Analysis System, 1D–2D Modeling User’s Manual, version 5.0. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, 2016.
- Tayefi, V., Lane, S. N., Hardy, R. J. and Yu, D., A comparison of one‐and two‐dimensional approaches to modelling flood inundation over complex upland floodplains. Hydrol. Process.: Int. J., 2007, 21(23), 3190–3202.
- Saltelli, A. and Sobol, I. M., About the use of rank transformation in sensitivity analysis of model output. Reliab. Eng. Syst. Saf., 1995, 50(3), 225–239.
- Taylor, J. R., An introduction to error analysis: the study of uncertainties in physical measurements, University of Science Books, Sausalito, California, 1997, pp. 92.
Abstract Views: 346
PDF Views: 123