Open Access Open Access  Restricted Access Subscription Access

Endophytic Fungi of Salt Adapted Ipomea pes-caprae L. R. Br: their Possible Role in Inducing Salinity Tolerance in Paddy (Oryza sativa L.)


Affiliations
1 Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
2 School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
 

Endophytic fungi occur ubiquitously in all plants. Though their origin and evolution is enigmatic, they are known to play an important role in plant growth and development. Here we explore the endophytic fungal diversity of a perennial cree ping vine, Ipomea pes-caprae (family Convolulaceae), occurring naturally in the coastal sand dunes of peninsular India. Of the ten endophytes isolated from the plant, Fusarium oxysporum (MH511104) was found to grow even at 2 M NaCl in potato dextrose agar medium. The fungus was able to successfully colonize and impart salinity tolerance to salt -sensitive paddy variety, IR-64. We discuss these results in the context of increasing global interest on endophytes as a possible alternative route to crop i mprovement.

Keywords

Endophytic Fungi, Ipomea pes-caprae, Paddy, Salt Stress.
User
Notifications
Font Size

  • Beena, K. R., Ananda, K. and Sridhar, K. R., Fungal endophytes of three sand dune plant species of west coast of India. Sydowia, 2000, 52(1), 1–9.
  • De-Souza, M. M., Madeira, A., Berti, C., Krogh, R., Yunes, R. A. and Cechinel-Filho, V., Antinociceptive properties of the methanolic extract obtained from Ipomoea pes-caprae (L.) R. Br. J. Ethnopharmacol., 2000, 69(1), 85–90.
  • Venkateasan, A., Prabakaran, R. and Sujatha, V., Phytoextract -mediated synthesis of zinc oxide nanoparticles using aqueous leaves extract of Ipomoea pes-caprae (L). R. Br. revealing its biological properties and photocatalytic activity. Nano Technol. Environ. Eng., 2017, 2(1), 8; https://doi.org/10.1007/s41204-017-0018-7
  • Manigauha, A., Kharya, M. D. and Ganesh, N., In vivo antitumor potential of Ipomoea pes-caprae on melanoma cancer. Pharmacogn. Mag., 2015, 11(42), 426.
  • Chan, E. W. C., Baba, S., Chan, H. T., Kainuma, M. and Tangah, J., Medicinal plants of sandy shores: A short review on Vitex trifolia L. and Ipomoea pes-caprae (L.) R. Br. Indian J. Nat. Prod.Resour., 2016, 7(2), 107–115.
  • Rodriguez, R. J. et al., Stress tolerance in plants via habitat -adapted symbiosis. ISME J., 2008, 2(4), 404–416.
  • Shrivastava, P. and Kumar, R., Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci., 2015, 22(2), 123–131.
  • Munns, R. and Tester, M., Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 2008, 59, 651–681.
  • Thomson, M. J. et al., Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice, 2010, 3(2), 148; doi:org/10.1007/s12284-010-9053-8.
  • Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. and Kursar, T. A., Are tropical fungal endophytes hyperdiverse?. Ecol.Lett., 2000, 3(4), 267–274.
  • Schulz, B., Wanke, U., Draeger, S. and Aust, H. J., Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res., 1993, 97(12), 1447–1450.
  • Booth, C., The Genus Fusarium, Commonwealth Mycological Institute, Kew Su rvey England, 1971, p. 237.
  • Domsch, K. H., Gams, W. and Anderson, T. H., Compendium of Soil Fungi, Academic Press (London) Ltd, 1980, vol. 1, p. 859.
  • Arx von, J. A., The genera of fungi sporulating in pure culture . Ganther, K. G. & J. Cramer, Vaduz, Liechtenstein, 3rd edn, 1981.
  • Huang, W. Y., Cai, Y. Z., Hyde, K. D., Corke, H. and Sun, M., Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers., 2008, 33, 61–75.
  • Hammer, Ø., Harper, D. A. T. and Ryan, P. D., PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron., 2001, 4, 9.
  • Doyle, J. J. and Doyle, J. L., A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem. Bull., 1987, 19, 11–15.
  • White, T. J., Bruns, T., Lee, S. J. W. T. and Taylor, J. L., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, (eds Gelfand, M., Sninsky, D. and White, T. J.), Academic Press, New York, NY, USA,1990, vol. 18(1), pp. 315–322.
  • Higgins, K. L., Arnold, A. E., Miadlikowska, J., Sarvate, S. D. and Lutzoni, F., Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic end ophytes from three major plant lineages. Mol. Phylogenet. Evol., 2007, 42(2), 543–555.
  • Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406–425.
  • Kumar, S., Stecher, G. and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, 33(7), 1870–1874.
  • Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39(4), 783–791.
  • Zhang, Q., Zhang, J., Yang, L., Zhang, L., Jiang, D., Chen, W. and Li, G., Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control, 2014, 72, 98–108.
  • Suryanarayanan, T. S. and Kumaresan, V., Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol. Res., 2000, 104(12), 1465–1467.
  • Thiem, D., Piernik, A. and Hrynkiewicz, K., Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland. Symbiosis, 2018, 75(1), 17–28.
  • Manasa, K. M., Ravikanth, G., Nataraja, K. N. and Uma Shaanker, R., Isolation and characterization of endophytic fungi from saline habitat adapted plants. Mysore J. Agric. Sci., 2015, 49(2), 299–301.
  • Soares, M. A., Li, H. Y., Kowalski, K. P., Bergen, M., Torres, M. S. and White, J. F., Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol. Invasions, 2016, 18(9), 2689–2702.
  • Paranetharan, M. S., Thirunavukkarasu, N., Rajamani, T., Murali, T. S. and Suryanarayanan, T. S., Salt-tolerant chitin and chitosan modifying enzymes from Talaromyces stipitatus, a mangrove endophyte. Mycosphere, 2018, 9(2), 215–226.
  • Yuan, Z. et al., Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci. Rep., 2016, 6, 32467; doi:10.1038/srep32467.
  • Indira, K. and Srinivasan, M., Diversity and ecological distribution of endophytic fungi associated with salt marsh plants . Indian J. Geo. Mar. Sci., 2017, 46(3), 612–623.
  • Liu, K. H. et al., Morphological and transcriptomic analysis reveals the osmoadaptive response of endophytic fungus Aspergillus montevidensis ZYD4 to high salt stress. Front Microbiol., 2017, 8, 1789; doi.org/10.3389/fmicb.2017.01789.
  • Sangamesh, M. B. et al., Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, Indi a. Symbiosis, 2018, 75(2), 135–147.
  • Rho, H., Hsieh, M., Kandel, S. L., Cantillo, J., Doty, S. L. and Kim, S. H., Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb. Ecol., 2018, 75(2), 407–418.
  • Asaf, S. et al., Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol. Biochem., 2018, 128, 13–23.
  • Abdelaziz, M. E., Kim, D., Ali, S., Fedoroff, N. V. and Al-Babili, S., The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+ /K+ homeostasis under salt stress conditions. Plant Sci., 2017, 263, 107–115.

Abstract Views: 379

PDF Views: 151




  • Endophytic Fungi of Salt Adapted Ipomea pes-caprae L. R. Br: their Possible Role in Inducing Salinity Tolerance in Paddy (Oryza sativa L.)

Abstract Views: 379  |  PDF Views: 151

Authors

K. M. Manasa
Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
M. M. Vasanthakumari
School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
K. N. Nataraja
Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
R. Uma Shaanker
School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bengaluru 560 065, India

Abstract


Endophytic fungi occur ubiquitously in all plants. Though their origin and evolution is enigmatic, they are known to play an important role in plant growth and development. Here we explore the endophytic fungal diversity of a perennial cree ping vine, Ipomea pes-caprae (family Convolulaceae), occurring naturally in the coastal sand dunes of peninsular India. Of the ten endophytes isolated from the plant, Fusarium oxysporum (MH511104) was found to grow even at 2 M NaCl in potato dextrose agar medium. The fungus was able to successfully colonize and impart salinity tolerance to salt -sensitive paddy variety, IR-64. We discuss these results in the context of increasing global interest on endophytes as a possible alternative route to crop i mprovement.

Keywords


Endophytic Fungi, Ipomea pes-caprae, Paddy, Salt Stress.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi9%2F1448-1453