Open Access Open Access  Restricted Access Subscription Access

Something More than Graphene – Futuristic Two-Dimensional Nanomaterials


Affiliations
1 Department of Electronics and Communication Engineering, Guru Nanak Dev University, Regional Campus, Jalandhar 144 007, India
 

The race to scale down electronic circuits has resulted in the novel two-dimensional (2D) materials. Graphene, after its discovery in 2004, topped the list on account of its superior electronic, optical, mechanical and transport properties. Since, graphene possesses zero band gap, it could not be used in digital circuits; so other potential 2D materials have been studied. Materials like transition metal dichalcogenides (TMDs), 2D oxides, hexagonal boron nitride and 2D Xenes (silicene, borophene, stanene, phosphorene and borophene) belong to the plethora of materials following the discovery of graphene. They apparently show potential in quantum computing and superfast electronics. They display ballistic transport and relativistic properties due to the mass-less fermions. Quantum spin Hall effect too is observed along with quantum Hall effect in many of them, which advocates their use in spintronics. Owing to these superior properties, they appear to be promising candidates for a paradigm shift from microelectronics to nanoelectronics. The 2D structural analogues of graphene, i.e. silicene, borophene, stanene, phosphorene and germanene are fast emerging alternative 2D materials compared to 2D oxides and TMDs, since they have a better degree of integration with the existing silicon-based technology. This article surveys the emerging 2D materials which hold promise in the future.

Keywords

Two-Dimensional Materials, Nanoelectronics, Quantum Computing, Spintronics, Xenes.
User
Notifications
Font Size

  • Geim, A. K. and Novoselov, K. S., The rise of graphene. Nature Mater., 2007, 6, 183–191.
  • Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P. and Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem., 2013, 5(4), 263– 275; doi:10.1038/nchem.1589.
  • Chen, W. et al., Hydrogenation: a simple approach to realize semiconductor–half metal–metal transition in boron nitride nanoribbons. J. Am. Chem. Soc., 2010, 132, 1699–1705.
  • Favron, A. et al., Photo oxidation and quantum confinement effects in exfoliated black phosphorus. Nature Mater., 2015, 14, 826–832.
  • Gregory, A. et al., Graphene ballistic nano-rectifier with very high responsivity. Nature Commun., 2016, 7, 11670.
  • Tang, Q. and Zhou, Z., Graphene-analogous low-dimensional materials. Prog. Mat. Sci., 2013, 58, 1244–1315.
  • Jun, Y. W., Seo, J. W., Oh, S. J. and Cheon, J., Recent advances in the shape control of inorganic nano-building blocks. Coord. Chem. Rev., 2005, 249, 1766–1775.
  • Wang, K., Yin, P., Zhang, Y. and Jiang, W., Phase diagram and magnetization of a graphene nano-island structure, Physica A, 2018, 505, 268–279.
  • Xin, W. et al., One-step synthesis of tunable-size gold nanoplates on graphene multilayers. Nano Lett., 2018, 18, 1875–1881.
  • Banszerus, L. et al., Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett., 2016, 16, 1387–1391.
  • Lin, Y. and Connell, J. W., Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale, 2012, 4, 6908–6939.
  • Osada, M. and Sasaki, T., Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem., 2009, 19, 2503– 2511.
  • Jiang, Z., Zhang, Y., Tan, Y. W., Stormer, H. L. and Kim, P., Quantum hall effect in graphene, Solid State Commun., 2007, 143, 14–19.
  • Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U. and Geim, A. K., Room-temperature quantum hall effect in graphene. Science, 2007, 315(5817), 1379–1379; doi:10.1126/science.1137201.
  • Chuang, H.-J. et al., Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2 and MoSe2 transistors. Nano Lett., 2016 16(3), 1896–1902; doi: 10.1021/acs.nanolett.5b05066.
  • Zhu, Q., Xu, Z., Li, J. G., Li, X., Qi, Y. and Sun, X., Hydrothermal-assisted exfoliation of Y/Tb/Eu ternary layered rare-earth hydroxides into tens of micron-sized uni-lamellar nanosheets for highly oriented and color-tunable nano-phosphor films. Nanoscale Res. Lett., 2015, 10, 132.
  • Robinson, J. A., Schaak, R. E., Sun, D., Sun, Y., Mallouk, T. E. and Terrones, M., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few layer nanosheets. Acc. Chem. Res., 2014, 48(1), 56–64; doi:10.1021/ar5002846.
  • Meng, L. et al., Buckled silicene formation on Ir(111). Nano Lett., 2013, 13, 685–690.
  • Ozawa, T. C., Fukuda, K., Akatsuka, K., Ebina, Y. and Sasaki, T., Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.9Eu0.05Nb2O7. Chem. Mater., 2007, 19, 6575–6580.
  • Lalm, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B. and Aufray, B., Epitaxial growth of a silicene sheet. Appl. Phys. Lett., 2012, 97, 223109.
  • Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y. and Yamada-Takamura, Y., Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett., 2012, 108, 245501.
  • Zhao, J. et al., Rise of silicene: a competitive 2D material. Prog. Mater. Sci., 2016, 83, 24–151.
  • Cunningham, G. et al., Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano, 2012, 6, 3468– 3480.
  • Hernandez, Y. et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol., 2008, 3, 563–568.
  • Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A., Single-layer MoS2 transistors. Nature Nanotechnol., 2011, 6, 147–150.
  • Hill, H. M., Rigosi, A. F., Rim, K. T., Flynn, G. W. and Heinz, T. F., Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 2016, 16, 4837–4837.
  • Choi, W. et al., Recent development of two-dimensional transition metal dichalcogenides and their applications NanoMicro Lett., 2018, 10, 23.
  • Kappera, R., Voiry, D., Yalcin, S. E., Branch, B., Gupta, G., Mohite, A. D. and Chhowalla, M., Phase-engineered lowresistance contacts for ultrathin MoS2 transistors Nature Mater., 2014, 13, 1128.
  • Guo, Y. et al., Probing the dynamics of the metallic-tosemiconducting structural phase transformation in MoS2 crystals. Nano Lett., 2015, 15, 5081.
  • Zhu, Z. Y., Cheng, Y. C. and Schwingenschlögl, U., Giant spin– orbit-induced spin splitting in two-dimensional transitionmetal dichalcogenide semiconductors. Phys. Rev. B, 2011, 84, 153402.
  • Osada, M. and Sasaki, T., Chemical nanomanipulation of twodimensional nanosheets and its applications. In Nanofabrication (ed. Masuda, Y.), InTech, Rijeka, Croatia, 2011, pp. 153–166.
  • Radisavljevic, B., Whitwick, M. B. and Kis, A., Correction to integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2013, 7, 3729.
  • Splendiani, A. et al., Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10, 1271–1275.
  • Ahmad, S. and Mukherjee, S., A comparative study of electronic properties of bulk MoS2 and its monolayer using DFT technique: application of mechanical strain on MoS2 monolayer. Graphene, 2014, 3(4). 52–59.
  • Zeng, H., Dai, J., Yao, W., Xiao, D. and Cui, X., Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnol., 2012, 7, 494–498; doi:10.1038/nnano.2012.95.
  • Bertolazzi, S., Brivio, J. and Kis, A., Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5, 9703–9709.
  • Kaplan-Ashiri, I., Cohen, S. R., Gartsman, K., Rosentsveig, R., Seifert, G. and Tennea, R., Mechanical behavior of individual WS2 nanotubes. J. Mater. Res., 2004, 19, 454–459.
  • Cai, L. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc., 2015, 137, 2622–2627.
  • Wang, H., Zhao, Y., Xie, Y., Ma, X. and Zhang, X., Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38, 031003.
  • Krasheninnikov, A. and Nordlund, K., Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys., 2010, 107, 071301.
  • Mahvash, F. et al., Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci. Rep., 2017, 7, 42139.
  • Wang, J., Ma, F. and Sun, M., Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv., 2017, 7, 16801.
  • Wiechert, H., Adsorption of molecular hydrogen isotopes on graphite and BN. In Absorbed Layers on Surfaces (ed. Bonzel, A. P.), Springer, 2003, pp. 166–196.
  • Zeng, H. et al., ‘White graphenes’: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett., 2010, 10, 5049– 5055.
  • Zhi, C., Bando, Y., Tang, C., Kuwahara, H. and Golberg, D., Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Matter, 2009, 21, 2889–2893.
  • Lin, Y., Williams, T. V. and Connell, J. W., Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett., 2009, 1, 277–283.
  • Lin, Y. and Connell, J. W., Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale, 2012, 4, 6908–6939.
  • Liu, D. et al., Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature Commun., 2019, 10, 1188; https://doi.org/10.1038/s41467-019-09016-0.
  • Aldalbahi, A. and Feng, P., Development of 2-D boron nitride nanosheets UV photoconductive detectors. IEEE Trans. Electron. Devices, 2015, 62(6), 1885–1890; doi:10.1109/ted.2015.2423253.
  • Wang, V., Liu, R.-J., He, H.-P., Yang, C.-M. and Ma, L., Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN. Solid State Commun., 2014, 177, 74– 79.
  • Zhang, K., Feng, Y., Wang, F., Yang, Z. and Wang, J., Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C, 2017, 5(46), 1992–12022.
  • Mukherjee, S and Thilagar, P., Borophene a new paradigm. Curr. Sci., 2016, 111(8), 1302–1304.
  • Sahin, H. et al., Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations, Phys. Rev. B, 2009, 80, 155453.
  • Meng, W., Huang, Y., Fu, Y., Wang, Z. and Zhi, C., Polymer composites of boron nitride nanotubes and nanosheets. J. Mater. Chem. C, 2014, 2(47), 10049–10061; doi:10.1039/c4tc01998a.
  • Lee, C. et al., Frictional characteristics of atomically thin sheets. Science, 2010, 328, 76–80.
  • Zhou, J., Wang, Q., Sun, Q. and Jena, P., Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Phys. Rev. B, 2010, 81(8), 085442.
  • Lin, Y., Williams, T. V. and Connell, J. W., Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett., 2009, 1, 277–283.
  • Golberg, D. et al., Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4, 2979–2993.
  • Britnell, L., Gorbachev, R. V. and Jalil, R., Atomically thin boron nitride: a tunneling barrier for graphene devices. Nano Lett., 2012, 12(3), 1707–1710.
  • Chandni, U., Watanabe, K., Taniguchi, T. and Eisenstein, J. P., Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions, Nano Lett., 2015, 15(11), 7329–7333.
  • O’Leary, S., O’Hare, D. and Seeley, G., Delamination of layered double hydroxides in polar monomers: new LDH-acrylate nanocomposites. Chem. Commun., 2002, 1506–1507.
  • Okada, Y. et al., Scanning tunnelling spectroscopy of superconductivity on surfaces of LiTi2O4(111) thin films. Nature Commun., 8, 15975.
  • Geng, F. et al., New layered rare-earth hydroxides with anionexchange properties. Chem.-Eur. J., 2008, 14, 9255–9260.
  • Taniguchi, T. et al., Enhanced and engineered d0 ferromagnetism in molecularly-thin zinc oxide nanosheets. Adv. Funct. Mater, 2013, 23, 3140–3145.
  • Sakai, N., Ebina, Y., Takada, K. and Sasaki, T., Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc., 2004, 126(18), 5851–5858; doi:10.1021/ja0394582.
  • Akatsuka, K., Takanashi, G., Ebina, Y., Sakai, N., Haga, M.-A. and Sasaki, T., Electrochemical and photoelectrochemical study on exfoliated Nb3O8 nanosheet. J. Phys. Chem. Solids, 2008, 69, 1288–1291.
  • Li, B.-W. et al., Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process. ACS Nano, 2010, 4, 6673–6680.
  • Ida, S. et al., Preparation of a blue luminescent nanosheet derived from layered perovskite Bi2SrTa2O9. J. Am. Chem. Soc., 2007, 129, 8956–8957.
  • Osada, M. et al., Ferromagnetism in two- dimensional Ti0.8Co0.2O2 nanosheets. Phys. Rev. B, 2006, 73, 153301.
  • Osada, M., Ebina, Y., Takada, K. and Sasaki, T., Gigantic magneto-optical effects in multilayer assemblies of twodimensional titania nanosheets. Adv. Mater., 2006, 18, 295–299.
  • Mahmood, N., De Castro, I. A., Pramoda, K., Khoshmanesh, K., Bhargava, S. K. and Kalantar-Zadeh, K., Atomically thin twodimensional metal oxide nanosheets and their heterostructures for energy storage. Energy Storage Mater., 2018, 16, 455–480; doi: 10.1016/j.ensm.2018.10.013.
  • Ding, Y. and Wang, Y. L., Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J. Phys. Chem. C, 2013, 117, 18266.
  • Matthes, L., Pulci, O. and Bechstedt, F., Massive Dirac quasi particles in the optical absorbance of graphene, silicene, germanene, and tinene. J. Phys. Condens. Matter, 2013, 25, 395305.
  • Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H. and Ciraci, S., Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett., 2009, 102, 236804.
  • Chen, H. D. and Lin, D. S., Ordered 2D structure formed upon the molecular beam epitaxy growth of Ge on the silicene/Ag(111) surface. ACS Omega, 2016, 1, 357−362.
  • Qiao, J., Kong, X., Hu, Z.-X., Yang, F. and Ji, W., High mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Commun., 2014, 5, 4475.
  • Liao, M. et al., Superconductivity in few-layer stanene. Nature Phys., 2018, 14, 344–348.
  • Liu, H., Neil, A. T., Zhu, Z., Xu, X. and Tomaneket, D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033–4041.
  • Tran, V., Soklaski, R., Liang, Y. and Yang, L., Layer controlled band gap and anisotropic excitons in fewlayer black phosphorus. Phys. Rev. B, 2014, 89, 235319.
  • Li, W. et al., Experimental realization of honeycomb borophene, Sci. Bullet., 2018, 63, 282–286.
  • Peng, B. et al., Stability and strength of atomically thin borophene from first principles calculations. Mater. Res. Lett., 2017, 5, 399–407.
  • Tao, W. et al., Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev., 2019, 48, 2891.
  • Vogt, P. et al., Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett., 2012, 108, 155501.
  • Mannix, A. J., Kiraly, B., Hersam, M. C. and Guisinger, N. P., Synthesis and chemistry of elemental 2D materials. Nature Rev. Chem., 2017, 1(2), 0014; doi:10.1038/s41570-016-0014.
  • Zhu, F.-F. et al., Epitaxial growth of two-dimensional stanene. Nature Mater., 2015, 14, 1020–1025.
  • Ramasubramaniam, A. and Muniz, A. R., Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys. Rev. B, 2014, 90, 085424.
  • Mannix, A. J. et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science, 2015, 350, 1513– 1516.
  • Chen, L. et al., Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett., 2012, 109, 056804.
  • Sivek, J., Şahin, H., Partoens, B. and Peeters, F. M., Adsorption and absorption of boron, nitrogen, aluminium and phosphorus on silicene: stability, electronic and phonon properties. Phys. Rev. B, 2013, 87, 085444.
  • Arafune, R., Lin, C. L., Nagao, R., Kawai, M. and Takagi, N., Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett., 2013, 110(22), 229701.
  • Acun, A. et al., Germanene: the germanium analogue of graphene. J. Phys.: Condens. Matter, 2015, 27, 443002.
  • Chen, X., Yang, Q., Meng, R., Jiang, J., Liang, Q., Tan, C. and Sun, X., The electronic and optical properties of novel Germanene and antimonene heterostructure. J. Mater. Chem. C, 2016, 4, 5434–5441.
  • Nagarajan, V. and Chandiramouli, R., Investigation of electronic properties and spin–orbit coupling effects on passivated stanene nanosheet: a first-principles study. Superlattices Microstruct., 2017, 107, 118–126.
  • Xu, Y. et al., Large-gap quantum spin Hall insulators in tin film. Phys. Rev. Lett., 2013, 111, 136804.
  • Sa, B. and Li, Y. L., Strain engineering for phosphorene: the potential application as a photocatalyst. Phys. Chem. C, 2014, 118(46), 26560–26568.
  • Youngblood, N., Chen, C., Koester, S. J. and Li, M., Waveguideintegrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9, 247–252.
  • Li, G., Zhao, Y., Zeng, S., Zulfiqar, M. and Ni, J., Strain effect on the superconductivity in borophenes. J. Phys. Chem. C, 2018, 122, 16916–16924.
  • Xu, L.-C., Du, A. and Kou, L., Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity. Phys. Chem. Chem. Phys., 2016, 18(39), 27284–27289.
  • Li, D. et al., Review of thermal transport and electronic properties of borophene. Chin. Phys. B, 2018, 27(3), 036303.
  • Tao, W., Kong, N. and Ji, X., Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev., 2019, 48, 2891–2912.
  • Kaltsas, D., Tsatsoulis, T., Ziogos, O. G. and Tsetseris, L., Response of silicane and germanane to uni-axial compression: superstructures, polymorph nano-ribbons, and extreme bending. J. Chem. Phys., 2013, 139(12), 124709; doi:10.1063/1.4822263.
  • Mortazavi, B., Rahaman, O., Makaremi, M., Dianat, A., Cuniberti, G. and Rabczuk, T., First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E, 2017, 87, 228–232; doi:10.1016/j.physe.2016.10.047.
  • Zhang, Z., Yang, Y., Penev, E. S. and Yakobson, B. I., Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater., 2017, 27(9), 1605059; doi:10.1002/adfm.201605059.
  • Krawiec, M., Functionalization of group-14 two-dimensional materials. J. Phys.: Condens. Matter, 2018, 30(23), 233003; doi:10.1088/1361-648x/aac149.
  • Zheng, F.-B. and Zhang, C.-W., The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res. Lett., 2012,7, 422.
  • Huang, B. et al., Exceptional optoelectronic properties of hydrogenated bilayer silicone. Phys. Rev. X, 2014, 4, 021029.
  • Lü, X. L., Xie, Y. and Xie, H., Topological and magnetic phase transition in silicene-like zigzag nanoribbons. New J. Phys., 2018, 20, 043054.
  • Herath, T. M. and Apalkov, V., Energy spectra and optical transitions in germanene quantum dots. J. Phys.: Condens. Matter, 2016, 28(16).
  • Jomehpour Z. S., Roknabadi, M. R., Morshedloo, T. and Modarresi, M., Electronic and thermal properties of germanene and stanene by first-principles calculations. Superlattices Microstruct., 2016, 91.
  • Lv, H. Y., Lu, W. J., Shao, D.-F. and Sun, Y. P., Large thermoelectric power factors in black phosphorus and phosphorene, 2014; arXiv:1404.5171 [cond-mat.mtrl-sci].
  • Haque, F., Daeneke, T., Kalantar, Z. K., Ou, J. Z., Twodimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett., 2018, 10, 23.
  • Peng, B. et al., The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C, 2016, 4(16), 3592–3598.
  • Ni, Z. et al., Tunable bandgap in silicene and germanene. Nano Lett., 2012, 12(1), 113–118.
  • Kastl, C., Chen, C. T., Koch, R. J., Schuler, B., Kuykendall, T. R., Bostwick, A. and Weber-Bargioni, A., Multimodal spectromicroscopy of monolayer WS2 enabled by ultra-clean van der Waals epitaxy. 2D Mater., 5, 045010.
  • Kim, H. D., Geometric and electronic structures of monolayer hexagonal boron nitride with multivacancy. Nano Converg., 2017, 13; doi.org/10.1186/s40580-017-0107-0.
  • Liu, Z.-L. et al., Various atomic structures of monolayer silicene fabricated on Ag(111), New J. Phys. 16, 2014, 075006.
  • Dávila, M. E. et al., Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys., 2014, 16, 095002.
  • Li, G. et al., Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chem. Soc. Rev., 2018, 47, 6073.
  • Hu, Z. et al., Two-dimensional black phosphorus: its fabrication, functionalization and applications. Nanoscale, 2018, 10, 21575– 21603.
  • Luo, Z., Fan, X. and An, Y., First-principles study on the stability and STM image of borophene. Nanoscale Res. Lett., 2017, 12, 514.
  • Miro, P., Audiffred, M. and Heine, T., An atlas of two dimensional materials. Chem. Soc. Rev., 2014, 43(18), 6537– 6554.

Abstract Views: 246

PDF Views: 94




  • Something More than Graphene – Futuristic Two-Dimensional Nanomaterials

Abstract Views: 246  |  PDF Views: 94

Authors

Inderdeep Singh Bhatia
Department of Electronics and Communication Engineering, Guru Nanak Dev University, Regional Campus, Jalandhar 144 007, India
Deep Kamal Kaur Randhawa
Department of Electronics and Communication Engineering, Guru Nanak Dev University, Regional Campus, Jalandhar 144 007, India

Abstract


The race to scale down electronic circuits has resulted in the novel two-dimensional (2D) materials. Graphene, after its discovery in 2004, topped the list on account of its superior electronic, optical, mechanical and transport properties. Since, graphene possesses zero band gap, it could not be used in digital circuits; so other potential 2D materials have been studied. Materials like transition metal dichalcogenides (TMDs), 2D oxides, hexagonal boron nitride and 2D Xenes (silicene, borophene, stanene, phosphorene and borophene) belong to the plethora of materials following the discovery of graphene. They apparently show potential in quantum computing and superfast electronics. They display ballistic transport and relativistic properties due to the mass-less fermions. Quantum spin Hall effect too is observed along with quantum Hall effect in many of them, which advocates their use in spintronics. Owing to these superior properties, they appear to be promising candidates for a paradigm shift from microelectronics to nanoelectronics. The 2D structural analogues of graphene, i.e. silicene, borophene, stanene, phosphorene and germanene are fast emerging alternative 2D materials compared to 2D oxides and TMDs, since they have a better degree of integration with the existing silicon-based technology. This article surveys the emerging 2D materials which hold promise in the future.

Keywords


Two-Dimensional Materials, Nanoelectronics, Quantum Computing, Spintronics, Xenes.

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi11%2F1656-1671