Open Access Open Access  Restricted Access Subscription Access

Ultraviolet-b Radiation: A Potent Regulator Of Flavonoids Biosynthesis, Accumulation And Functions In Plants


Affiliations
1 Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
 

Flavonoids represent a diverse group of polyphenolic secondary metabolites which are distributed amongst most of the plant species. Ultraviolet-B (UV-B) radiation is one of the important environmental regulators which governs the flavonoids biosynthesis at the transcriptional level. It is important to find out the role played by UV-B radiation in regulation of flavonoids biosynthesis and function under UV-B stress conditions in plants. This article summarizes the existing knowledge on the regulatory role of UV-B radiation on flavonoids biosynthesis and its accumulation trends in plants; further it discusses the diverse functions of flavonoids under the influence of UV-B radiation in plants.

Keywords

Flavonoids, Plant Species, Potent Regulator, Reactive Oxygen Species, Ultraviolet-b Radiation.
User
Notifications
Font Size

  • Bais, A. F., McKenzie, R. L., Bernhard, G., Aucamp, P. J., Ilyas, M., Madronich, S. and Tourpali, K., Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci., 2015, 14(1), 19–52.
  • Rozema, J., van de Staaij, J., Björn, L. O. and Caldwell, M., UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol. Evol., 1997, 12(1), 22–28.
  • Ballare, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A. and Bornman, J. F., Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci., 2011, 10(2), 226–241.
  • Brunetti, C., Di Ferdinando, M., Fini, A., Pollastri, S. and Tattini, M., Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int. J. Mol. Sci., 2013, 14(2), 3540–3555.
  • Jiang, N., Doseff, A. I. and Grotewold, E., Flavones: from biosynthesis to health benefits. Plants, 2016, 5(2), 27.
  • Mierziak, J., Kostyn, K. and Kulma, A., Flavonoids as important molecules of plant interactions with the environment. Molecules, 2014, 19(10), 16240–16265.
  • Agati, G., Galardi, C., Gravano, E., Romani, A. and Tattini, M., Flavonoid distribution in tissues of Phillyrea latifolia L. leaves as estimated by microspectrofluorometry and multispectral fluorescence microimaging. Photochem. Photobiol., 2002, 76, 350– 360.
  • Tattini, M. et al., On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol., 2005, 167(2), 457– 470.
  • Mukai, R., Shirai, Y., Saito, N., Yoshida, K. and Ashida, H., Subcellular localization of flavonol aglycone in hepatocytes visualized by confocal laser scanning fluorescence microscope. Cytotechnology, 2009, 59, 177–182.
  • Abeynayake, S. W., Panter, S., Mouradov, A. and Spangenberg, G., A high-resolution method for the localization of proanthocyanidins in plant tissues. Plant Methods, 2011, 7(1), 13.
  • Agati, G., Azzarello, E., Pollastri, S. and Tattini, M., Flavonoids as antioxidants in plants: location and functional significance. Plant Sci., 2012, 196, 67–76.
  • Hideg, E. and Strid A., The effects of UV-B on the biochemistry and metabolism of plants. In UV-B Radiation and Plant Life: Molecular Biology to Ecology (ed. Jordan, B. R.), CABI, Wallingford, UK, 2017, pp. 90–110.
  • Li, J., Ou-Lee, T. M., Raba, R., Amundson, R. G. and Last, R. L., Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell, 1993, 5(2), 171–179.
  • Falcone Ferreyra, M. L., Rius, S. and Casati, P., Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
  • Ferrer, J. L., Austin, M. B., Stewart Jr, C. and Noel, J. P., Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem., 2008, 46(3), 356–370.
  • Martens, S., Preuß, A. and Matern, U., Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry, 2010, 71(10), 1040–1049.
  • Jaakola, L., New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci., 2013, 18(9), 477–483.
  • Taylor, L. P. and Grotewold, E., Flavonoids as developmental regulators. Curr. Opin. Plant Biol., 2005, 8(3), 317–323.
  • Rizzini, L. et al., Perception of UV-B by the Arabidopsis UVR8 protein. Science, 2011, 332(6025), 103–106.
  • Jenkins, G. I., The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell, 2014, 26(1), 21–37.
  • Yin, R. and Ulm, R., How plants cope with UV-B: from perception to response. Curr. Opin. Plant Biol., 2017, 37, 42–48.
  • Clayton, W. A. et al., UVR8‐mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. Plant J., 2018, 96(3), 503–517.
  • Christie, J. M. et al., Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science, 2012, 335(6075), 1492–1496.
  • Favory, J. J. et al., Interaction of COP1 and UVR8 regulates UV‐B‐induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J., 2009, 28(5), 591–601.
  • Yin, R., Skvortsova, M. Y., Loubéry, S. and Ulm, R., COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc. Natl. Acad. Sci. USA, 2016, 113(30), E4415– E4422.
  • Binkert, M., Kozma-Bognár, L., Terecskei, K., De Veylder, L., Nagy, F. and Ulm, R., UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell, 2014, 26(10), 4200–4213.
  • Zoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H. and Jaakola, L., Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci., 2014, 5, 534.
  • Stracke, R. et al., The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet‐B radiation. Plant Cell Environ., 2010, 33(1), 88– 103.
  • Yang, Y. et al., UV RESISTANCE LOCUS 8 from Chrysanthemum morifolium Ramat (CmUVR8) plays important roles in UV-B signal transduction and UV-B-induced accumulation of flavonoids. Front. Plant Sci., 2018, 9, 955.
  • Shirley, B. W., Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends Plant Sci., 1996, 1(11), 377–382.
  • Liu, J., Osbourn, A. and Ma, P., MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant, 2015, 8(5), 689–708.
  • Allan, A. C., Hellens, R. P. and Laing, W. A., MYB transcription factors that colour our fruit. Trends Plant Sci., 2008, 13(3), 99– 102.
  • Sun, R. Z. et al., Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci., 2017, 8, 547.
  • Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R. and Weisshaar, B., Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, bZIP, and bHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol., 2005, 57(2), 155– 171.
  • Li, S., Transcriptional control of flavonoid biosynthesis: finetuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal Behav., 2014, 9(1), e27522.
  • Morales, L. O., Tegelberg, R., Brosché, M., Keinänen, M., Lindfors, A. and Aphalo, P. J., Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol., 2010, 30(7), 923–934.
  • Mellway, R. D., Tran, L. T., Prouse, M. B., Campbell, M. M. and Constabel, C. P., The wound-, pathogen-, and ultraviolet Bresponsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol., 2009, 150(2), 924–941.
  • Liu, L., Gregan, S., Winefield, C. and Jordan, B., From UVR8 to flavonol synthase: UV‐B‐induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ., 2015, 38(5), 905–919.
  • Bomal, C. et al., Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J. Exp. Bot., 2008, 59(14), 3925– 3939.
  • Ferreyra, M. L. F. et al., Cloning and characterization of a UV‐B‐inducible maize flavonol synthase. Plant J., 2010, 62(1), 77–91.
  • Liu, M., Li, X., Liu, Y. and Cao, B., Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol. Biochem., 2013, 73, 161–167.
  • Pandey, N., Goswami, N., Tripathi, D., Rai, K. K., Rai, S. K., Singh, S. and Pandey-Rai, S., Epigenetic control of UV-B-induced flavonoid accumulation in Artemisia annua L. Planta, 2018, 249(2), 497–514.
  • Gotto, E., Hayashi, K., Furuyama, S., Hikosaka, S. and Ishigami, Y., Effect of UV light on phytochemical accumulation and expression of anthocyanin biosynthesis genes in red leaf lettuce. Acta Hortic., 2016, 1134, 179–186.
  • Casati, P. and Walbot, V., Differential accumulation of maysin and rhamnosylisoorientin in leaves of high‐altitude landraces of maize after UV‐B exposure. Plant Cell Environ., 2005, 28(6), 788–799.
  • Inostroza-Blancheteau, C. et al., Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiol. Biochem., 2014, 85, 85–95.
  • Huang, X., Ouyang, X., Yang, P., Lau, O. S., Chen, L., Wei, N. and Deng, X. W., Conversion from CUL4-based COP1–SPA E3 apparatus to UVR8–COP1–SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16669–16674.
  • Park, J. S. et al., Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep., 2007, 26(4), 507– 516.
  • Ravaglia, D. et al., Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol., 2013, 13(1), 68.
  • Zhang, H., Wu, Z., Suo, Y., Wang, J., Zheng, L. and Wang, Y., Gene expression and flavonol biosynthesis are induced by ultravioletB and salt stresses in Reaumuria trigyna. Biol. Plant., 2017, 61(2), 246–254.
  • Ryan, K. G., Swinny, E. E., Markham, K. R. and Winefield, C., Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry, 2002, 59(1), 23–32.
  • Winkel-Shirley, B., Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol., 2002, 5(3), 218–223.
  • Harborne, J. B. and Williams, C. A., Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481–504.
  • Smith, G. J. and Markham, K. R., Tautomerism of flavonol glucosides: relevance to plant UV protection and flower colour. J. Photochem. Photobiol. A, 1998, 118(2), 99–105.
  • Markham, K. R., Tanner, G. J., Caasi-Lit, M., Whitecross, M. I., Nayudu, M. and Mitchell, K. A., Possible protective role for 3′,4′dihydroxyflavones induced by enhanced UV-B in a UV-tolerant rice cultivar. Phytochemistry, 1998, 49(7), 1913–1919.
  • Olsson, L. C., Veit, M., Weissenböck, G. and Bornman, J. F., Differential flavonoid response to enhanced UV-B radiation in Brassica napus. Phytochemistry, 1998, 49(4), 1021–1028.
  • Hofmann, R. W. et al., Responses of nine Trifolium repens L. populations to ultraviolet-B radiation: differential flavonol glycoside accumulation and biomass production. Ann. Bot., 2000, 86(3), 527–537.
  • Takshak, S. and Agrawal, S. B., Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant. J. Photochem. Photobiol. B, 2014, 140, 332–343.
  • Van de Staaij, J. et al., Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UV-B radiation. J. Photochem. Photobiol. B, 2002, 66(1), 21–29.
  • Choudhary, K. K. and Agrawal, S. B., Cultivar specificity of tropical mung bean (Vigna radiata L.) to elevated ultraviolet-B: changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids. Environ. Exp. Bot., 2014, 99, 122–132.
  • Kumari, R. and Agrawal, S. B., Supplemental UV‐B induced changes in leaf morphology, physiology and secondary metabolites of an Indian aromatic plant Cymbopogon citratus (DC) Staph under natural field conditions. Int. J. Environ. Stud., 2010, 67(5), 655–675.
  • Reuber, S., Bornman, J. F. and Weissenböck, G., A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV‐B radiation in the primary leaf. Plant Cell Environ., 1996, 19(5), 593–601.
  • Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A. and Tattini, M., The biosynthesis of flavonoids is enhanced similarly by UV radiation and ischolar_main zone salinity in L. vulgare leaves. J. Plant Physiol., 2011, 168(3), 204–212.
  • Vidović, M. et al., Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiol. Biochem., 2015, 93, 44–55.
  • Vidovic, M., Morina, F., Milic, S., Zechmann, B., Albert, A., Winkler, J. B. and Jovanovic, S. V., Ultraviolet‐B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. Plant Cell Environ., 2015, 38(5), 968–979.
  • Jiao, J., Gai, Q. Y., Wang, W., Luo, M., Gu, C. B., Fu, Y. J. and Ma, W., Ultraviolet radiation-elicited enhancement of isoflavonoid accumulation, biosynthetic gene expression, and antioxidant activity in Astragalus membranaceus hairy ischolar_main cultures. J. Agric. Food Chem., 2015, 63(37), 8216–8224.
  • Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H. Z. and Rahmat, A., Improvement in flavonoids and phenolic acids production and pharmaceutical quality of sweet basil (Ocimum basilicum L.) by ultraviolet-B irradiation. Molecules, 2016, 21(9), 1203.
  • Jansen, M. A., Hectors, K., O’Brien, N. M., Guisez, Y. and Potters, G., Plant stress and human health: do human consumers benefit from UV-B acclimated crops? Plant Sci., 2008, 175(4), 449–458.
  • Zhang, Z. Z., Che, X. N., Pan, Q. H., Li, X. X. and Duan, C. Q., Transcriptional activation of flavan-3-ols biosynthesis in grape berries by UV irradiation depending on developmental stage. Plant Sci., 2013, 208, 64–74.
  • Kliebenstein, D. J., Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ., 2004, 27(6), 675–684.
  • Weston, L. A. and Mathesius, U., Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J. Chem. Ecol., 2013, 39(2), 283–297.
  • Murphy, A., Peer, W. A. and Taiz, L., Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta, 2000, 211(3), 315–324.
  • Winkel-Shirley, B., Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 2001, 126(2), 485–493.
  • Kumar, S. and Pandey, A. K., Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013.
  • Shirley, B. W., Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci. Res., 1998, 8(4), 415–422.
  • Londoño, P. T., Papagiannopoulos, M., Gobbo-Neto, L. and Müller, C., Variation in flavonoid pattern in leaves and flowers of Primula veris of different origin and impact of UV-B. Biochem. Syst. Ecol., 2014, 53, 81–88.
  • Izaguirre, M. M., Mazza, C. A., SvatoŠ, A., Baldwin, I. T. and BallarÉ, C. L., Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann. Bot., 2007, 99(1), 103–109.
  • Kuhlmann, F. and Müller, C., UV‐B impact on aphid performance mediated by plant quality and plant changes induced by aphids. Plant Biol., 2010, 12(4), 676–684.
  • Wan, J., Zhang, P., Wang, R., Sun, L., Wang, W., Zhou, H. and Xu, J., UV-B radiation induces ischolar_main bending through the flavonoidmediated auxin pathway in Arabidopsis. Front Plant Sci., 2018, 9, 618.
  • Schmitz-Hoerner, R. and Weissenbock, G., Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry, 2003, 64(1), 243–255.
  • Xu, C., Sullivan, J. H., Garrett, W. M., Caperna, T. J. and Natarajan, S., Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry, 2008, 69(1), 38–48.
  • Van de Staaij, J., Rozema, J., Van Beem, A. and Aerts, R., Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field exposure. Plant Ecol., 2001, 154(1–2), 169–177.
  • Chimphango, S. B., Musil, C. F. and Dakora, F. D., Effects of UVB radiation on plant growth, symbiotic function and concentration of metabolites in three tropical grain legumes. Funct. Plant Biol., 2003, 30(3), 309–318.
  • Choudhary, K. K., Pandey, D. and Agrawal, S. B., Deterioration of rhizospheric soil health due to elevated ultraviolet-B. Arch. Agron. Soil Sci., 2013, 59(10), 1419–1437.
  • Day, T. A. and Demchik, S. M., Ultraviolet-B radiation screening effectiveness of reproductive organs in Hesperis matronalis. Environ. Exp. Bot., 1996, 36(4), 447–454.
  • Llorens, L., Badenes-Pérez, F. R., Julkunen-Tiitto, R., Zidorn, C., Fereres, A. and Jansen, M. A., The role of UV-B radiation in plant sexual reproduction. Perspect. Plant Ecol. Evol. Syst., 2015, 17(3), 243–254.
  • Feng, H., An, L., Tan, L., Hou, Z. and Wang, X., Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro. Environ. Exp. Bot., 2000, 43(1), 45–53.
  • Wang, S. et al., Increased UV‐B radiation affects the viability, reactive oxygen species accumulation and antioxidant enzyme activities in maize (Zea mays L.) pollen. Photochem. Photobiol., 2010, 86(1), 110–116.
  • Ben-Tal, Y. and King, R. W., Environmental factors involved in colouration of flowers of Kangaroo Paw. Sci. Hortic., 1997, 72(1), 35–48.
  • Dong, Y. H., Beuning, L., Davies, K., Mitra, D., Morris, B. and Kootstra, A., Expression of pigmentation genes and photoregulation of anthocyanin biosynthesis in developing Royal Gala apple flowers. Funct. Plant Biol., 1998, 25(2), 245–252.
  • Martínez-Lüscher, J. et al., Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry, 2014, 102, 106–114.
  • dos Santos Nascimento, L. B., Leal-Costa, M. V., Menezes, E. A., Lopes, V. R., Muzitano, M. F., Costa, S. S. and Tavares, E. S., UltravioletB radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. J. Photochem. Photobiol. B, 2015, 148, 73–81.
  • Ma, M., Wang, P., Yang, R. and Gu, Z., Effects of UV-B radiation on the isoflavone accumulation and physiological–biochemical changes of soybean during germination: physiological–biochemical change of germinated soybean induced by UV-B. Food Chem., 2018, 250, 259–267.
  • Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I. and Guevara-González, R. G., Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiol. Biochem., 2018, 134, 94–102.
  • Shourie, A., Tomar, P., Srivastava, D. and Chauhan, R., Enhanced biosynthesis of quercetin occurs as a photoprotective measure in Lycopersicon esculentum Mill. under acute UV-B exposure. Braz. Arch. Biol. Technol., 2014, 57(3), 317–325.
  • Li, X. J., Song, Q. H. and Ren, L. P., Enhanced ultraviolet-B radiation reduced isoflavones contents in soybean. Soybean Sci., 2009, 28(2), 357–359.
  • Ravindran, K. C., Kumar, N. M., Amirthalingam, V., Ranganathan, R., Chellappan, K. P. and Kulandaivelu, G., Influence of UV-B supplemental radiation on growth and pigment content in Suaeda maritima L. Biol. Plant., 2001, 44(3), 467–469.
  • Rajabbeigi, E., Eichholz, I., Beesk, N., Ulrichs, C., Kroh, L. W., Rohn, S. and Huyskens-Keil, S., Interaction of drought stress and UV-B radiation – impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). J. Appl. Bot. Food Qual., 2013, 86(1).
  • Eichholz, I. et al., UV-B-mediated flavonoid synthesis in white asparagus (Asparagus officinalis L.). Food Res. Int., 2012, 48(1), 196–201.
  • Dai, J. and Mumper, R. J., Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15(10), 7313–7352.

Abstract Views: 450

PDF Views: 149




  • Ultraviolet-b Radiation: A Potent Regulator Of Flavonoids Biosynthesis, Accumulation And Functions In Plants

Abstract Views: 450  |  PDF Views: 149

Authors

Avantika Pandey
Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
Shashi Bhushan Agrawal
Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221 005, India

Abstract


Flavonoids represent a diverse group of polyphenolic secondary metabolites which are distributed amongst most of the plant species. Ultraviolet-B (UV-B) radiation is one of the important environmental regulators which governs the flavonoids biosynthesis at the transcriptional level. It is important to find out the role played by UV-B radiation in regulation of flavonoids biosynthesis and function under UV-B stress conditions in plants. This article summarizes the existing knowledge on the regulatory role of UV-B radiation on flavonoids biosynthesis and its accumulation trends in plants; further it discusses the diverse functions of flavonoids under the influence of UV-B radiation in plants.

Keywords


Flavonoids, Plant Species, Potent Regulator, Reactive Oxygen Species, Ultraviolet-b Radiation.

References





DOI: https://doi.org/10.18520/cs%2Fv119%2Fi2%2F176-185