Open Access Open Access  Restricted Access Subscription Access

Rapid Lake Level Fall in Pangong Tso (lake) in Ladakh, NW Himalaya: A Response of Late Holocene Aridity


Affiliations
1 Wadia Institute of Himalayan Geology, Dehradun 248 001, India
2 Birbal Sahni Institute of Palaeosciences, Lucknow 226 007, India
3 Department of Geology, Lucknow University, Lucknow 226 007, India
4 National Centre for Polar and Ocean Research, Goa 403 802, India
5 Department of Geology, HNB Garhwal University, Srinagar 249 161, India
 

Pangong Tso is a brackish water lake that lies along Pangong strand of the Karakoram strike–slip fault in arid Trans Himalayan region. The geomorphic mapping along the periphery of the lake suggested the presence of four palaeolake level strands located at 6, 4.8, 3.8 and 1.25 m above the present lake level. The gullied periphery expose relict deltaic sediments where sedimentological study enabled us to identify four deltaic lobes that make a classic Gilbert-type delta with well-developed top-set, fore-set and bottom-set. The top-set of the stratigraphically oldest delta lobe that corresponds to the highest lake level shows the presence of freshwater molluscs identified as Radix and a burnt sediment layer (hearth). The charcoal derived from this layer yielded 14C date as 1.7 ka BP and six luminescence ages from different delta lobes suggested that delta evolution and lake level fall of ~6 m took place between ~2–1 ka. Review of palaeoclimate record available from NW Himalaya and Pangong Tso suggests that late Holocene aridity might be responsible for this rapid lake level fall. Sclerochronological analysis carried out on 54 subsamples from three Radix specimens suggested that the modern type of seasonal conditions may have prevailed at ~1.7 ka BP.

Keywords

Ladakh Himalaya, Lake-Delta, Late Holocene Aridity, Pangong Tso, Sclerochronological Analysis.
User
Notifications
Font Size

  • Cohen, A. S., Paleolimnology: the History and Evolution of Lake Systems, Oxford University Press, 2003.
  • Coulthard, T. J., Lewin, J. and Macklin, M. G., Modelling differential catchment response to environmental change. Geomorphology, 2005, 69(1–4), 222–241.
  • Dietze, E. et al., Basin morphology and seismic stratigraphy of Lake DonggiCona, north-eastern Tibetan Plateau, China. Quaternary Int., 2010, 218(1–2), 31–142.
  • Zhang, Y., Wünnemann, B., Bezrukova, E. V., Ivanov, E. V., Shchetnikov, A. A., Nourgaliev, D. and Levina, O. V., Basin morphology and seismic stratigraphy of Lake Kotokel, Baikal region, Russia. Quaternary Int., 2013, 290, 57–67.
  • Ghimire, S. and Higaki, D., Dynamic river morphology due to land use change and erosion mitigation measures in a degrading catchment in the Siwalik Hills, Nepal. Int. J. River Basin Manage., 2015, 13(1), 27–39.
  • Ma, R. et al., China’s lakes at present: number, area and spatial distribution. Sci. China Earth Sci., 2011, 54(2), 283–289.
  • Negi, S. S., Cold Deserts of India, Indus Publishing, New Delhi, 2002, 2nd edn, p. 248.
  • Bhat, F. A., Yousuf, A. R., Aftab, A., Arshid, J., Mahdi, M. D. and Balkhi, M. H., Ecology and Biodiversity in Pangong Tso (lake) and Its Inlet Stream in Ladakh, India. Int. J. Biodivers. Conserv., 2011, 3, 501–511.
  • Chang, W. Y., Large lakes of China. J. Great Lakes Res., 1987, 13(3), 235–249.
  • Boominathan, M. and Ramachandra, T. V., Molluscs of Pangong Tso, a high altitude brackish water lake in Ladakh, 2010.
  • Klimes, L., Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl. Ecol., 2003, 4(4), 317–328.
  • Bookhagen, B., Thiede, R. C. and Strecker, M. R., Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 2005, 33(2), 149–152.
  • Weiers, S., ZurKlimatologie des NW Karakoram und AngrenzenderGebiete. Bonner Geogr. Abh., Bonn, Germany, 1994, p. 169.
  • Staubwasser, M. and Weiss, H., Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quaternary Res., 2006, 66(3), 372–387.
  • Government of Jammu and Kashmir, Environment and social management framework for Participatory Watershed Management Project (PWMP) J&K, IWDP-Hills II, 2007, Annex, p. 130.
  • Hartmann, H., Zur Flora und Vegetation der Halbwüsten, Steppen und RasengesellschaftenimsüdöstlichenLadakh (Indien). Jahrbuch des VereinszumSchutz der Bergwelt, 1997, 62, 129–188.
  • Hartmann, H., Studienzur Flora und Vegetation imöstlichenTranshimalaya von Ladakh (Indien). Candollea, 1999, 54, 171–230.
  • Pant, R. K., Phadtare, N. R., Chamyal, L. S. and Juyal, N., Quaternary deposits in Ladakh and Karakoram Himalaya: a treasure trove of the palaeoclimate records. Curr. Sci., 2005, 88(11), 1789–1798.
  • Trinkler, E., The ice-age on the Tibetan Plateau and in the adjacent regions. Geographical J., 1930, 75(3), 225–232.
  • Srikantia, S. V., Ganesan, T. M. and Wangdus, C., A note on the tectonic framework and geologic set-up of the Pangong–Chushul sector, Ladakh Himalaya. J. Geol. Soc. India, 1982, 23(7), 354–357.
  • Jain, A. K. and Singh, S., Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone: constraints from field observations and U–Pb SHRIMP ages. Tectonophysics, 2008, 451(1–4), 186–205.
  • Srivastava, P., Brook, G. A., Marais, E., Morthekai, P. and Singhvi, A. K., Depositional environment and OSL chronology of the Homeb silt deposits, Kuiseb River, Namibia. Quaternary Res., 2006, 65(3), 478–491.
  • Srivastava, P., Tripathi, J. K., Islam, R. and Jaiswal, M. K., Fashion and phases of late Pleistocene aggradation and incision in the Alaknanda River Valley, western Himalaya, India. Quaternary Res., 2008, 70(1), 68–80.
  • Murray, A. S. and Wintle, A. G., Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Measur., 2000, 32(1), 57–73.
  • Aitken, M. J., Introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence, Clarendon Press, 1998.
  • Prescott, J. R. and Stephan, L. G., The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependences. PACT, 1982, 6, 17–25.
  • Gupta, S. K. and Polach, H. A., Radiocarbon Dating Practices at ANU, 1985.
  • Stuiver, M. and Reimer, P. J., Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 1993, 35(1), 215–230.
  • Anderson, R., An annotated list of the non-marine Mollusca of Britain and Ireland. J. Conchol., 2005, 38(6), 607–638.
  • Hutchinson, G. E., Limnological studies in Indian Tibet. Int. Hydrobiol., 1937, 35, 134–177.
  • Brown, E. T., Bendick, R., Bourles, D. L., Gaur, V., Molnar, P., Raisbeck, G. M. and Yiou, F., Early Holocene climate recorded in geomorphological features in Western Tibet. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2003, 199(1–2), 141–151.
  • Ou, Y. X. and Liu, D. S., Hydrologic characteristics of the east Bangong Lake. In Geological and Ecological Studies of QinghaiXizang Plateau. Proceedings of Symposium on Qinghai-Xizang (Tibet) Plateau, Beijing, China, Science Press and Gordon and Breach, Beijing, 1981, pp. 1713–1717.
  • Drew, F., Alluvial and lacustrine deposits and glacial records of the Upper-Indus Basin. Quarterly J. Geol. Soc., 1873, 29(1–2), 441–471.
  • Fontes, J. C., Gasse, F. and Gibert, E., Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1996, 120(1–2), 25– 47.
  • Huang, C. X., A preliminary study of paleovegetation and paleoclimate in the later period of late Pleistocene in Bangongcuo Lake region of Xizang. J. Nat. Res., 1989, 4, 247–253.
  • Shi, Y., Yu, G., Liu, X., Li, B. and Yao, T., Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2001, 169(1–2), 69–83.
  • Nemec, W., Aspects of sediment movement on steep delta slopes. In Coarse-Grained Deltas, 1990, vol. 10, pp. 29–73.
  • Bristow, C. S., Holmes, J. A., Mattey, D., Salzmann, U. and Sloane, H. J., A late Holocene palaeoenvironmental ‘snapshot’ of the Angamma Delta, Lake Megachad at the end of the African Humid Period. Quaternary Sci. Rev., 2018, 202, 182–196.
  • Mordan, P. and Wade, C., Heterobranchia-II. Phylogeny and Evolution of the Mollusca, 2008, p. 409.
  • Röpstorf, P. and Riedel, F., Deep-water gastropods endemic to Lake Baikal – an SEM study on protoconchs and radulae. J. Conchol., 2004, 38, 253.
  • Taft, L., Wiechert, U., Riedel, F., Weynell, M. and Zhang, H., Sub-seasonal oxygen and carbon isotope variations in shells of modern Radix sp. (Gastropoda) from the Tibetan Plateau: potential of a new archive for palaeoclimatic studies. Quaternary Sci. Rev., 2012, 34, 44–56.
  • Gaten, E., Life cycle of Lymnaeaperegra (Gastropoda: Pulmonata) in the Leicester canal, UK, with an estimate of annual production. Hydrobiologia, 1986, 135(1–2), 45–54.
  • Huntington, E., Pangong: a glacial lake in the Tibetan Plateau. J. Geol., 1906, 14(7), 599–617.
  • Philip, G. and Mazari, R. K., Shrinking lake basins in the proximity of the Indus Suture Zone of northwestern Himalaya: a case study of Tso Kar and Startsapuk Tso, using 1RS-1C data. Int. J. Remote Sensing, 2000, 21, 2973–2984.
  • Sangode, S. J., Meshram, D. C., Rawat, S., Suresh, N. and Srivastava, P., Sedimentary and geomorphic observations along Pangong strand of the Karakorum Fault (NW Himalaya) depicting Holocene Uplift. Himalayan Geol., 2017, 38(2), 111–128.
  • Walker, M. J. et al., Formal subdivision of the Holocene Series/ Epoch: a discussion paper by a working group of INTIMATE (Integration of ice–core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (International Commission on Stratigraphy). J. Quaternary Sci., 2012, 27(7), 649–659.
  • Rawat, S., Gupta, A. K., Sangode, S. J., Srivastava, P. and Nainwal, H. C., Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, northwest Himalaya, India. Quaternary Sci. Rev., 2015, 114, 167–181.
  • Owen, L. A., Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quaternary Sci. Rev., 2009, 28(21–22), 2150–2164.
  • Mehta, M., Majeed, Z., Dobhal, D. P. and Srivastava, P., Geomorphological evidences of post-LGM glacial advancements in the Himalaya: a study from Chorabari Glacier, Garhwal Himalaya, India. J. Earth Syst. Sci., 2012, 121(1), 149–163.
  • Mehta, M., Dobhal, D. P., Pratap, B., Majeed, Z., Gupta, A. K. and Srivastava, P., Late quaternary glacial advances in the tons river valley, Garhwal Himalaya, India and regional synchronicity. The Holocene, 2014, 24(10), 1336–1350.
  • Shukla, T., Mehta, M., Jaiswal, M. K., Srivastava, P., Dobhal, D. P., Nainwal, H. C. and Singh, A. K., Late Quaternary glaciation history of monsoon-dominated Dingad basin, central Himalaya, India. Quaternary Sci. Rev., 2018, 181, 43–64.
  • Kumar, A., Srivastava, P. and Meena, N. K., Late Pleistocene aeolian activity in the cold desert of Ladakh: a record from sand ramps. Quaternary Int., 2017, 443, 13–28.
  • Srivastava, P. et al., Paleofloods records in Himalaya. Geomorphology, 2017, 284, 17–30.
  • Demske, D., Tarasov, P. E., Wünnemann, B. and Riedel, F., Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2009, 279(3), 172–185.
  • Leipe, C., Demske, D., Tarasov, P. E., Wünnemann, B., Riedel, F. and Members, H. P., Potential of pollen and non-pollen palynomorph records from TsoMoriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human–environmental interactions. Quaternary Int., 2014, 348, 113–129.
  • Mishra, P. K. et al., Carbonate isotopes from high altitude TsoMoriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, 425, 76–83.
  • Wünnemann, B. et al., Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Sci. Rev., 2010, 29(9–10), 1138–1155.
  • Phartiyal, B., Singh, R. and Kothyari, G. C., Late-quaternary geomorphic scenario due to changing depositional regimes in the Tangtse Valley, Trans-Himalaya, NW India. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, 422, 11–24.
  • Dortch, J. M., Owen, L. A., Caffee, M. W. and Kamp, U., Catastrophic partial drainage of Pangong Tso, northern India and Tibet. Geomorphology, 2011, 125(1), 109–121.
  • Hou, J., D’Andrea, W. J., Wang, M., He, Y. and Liang, J., Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene. Quaternary Sci. Rev., 2017, 163, 84–94.
  • Mishra, P. K. et al., Reconstructed late quaternary hydrological changes from Lake TsoMoriri, NW Himalaya. Quaternary Int., 2015, 371, 76–86.
  • Dutt, S., Gupta, A. K., Wünnemann, B. and Yan, D., A long arid interlude in the Indian summer monsoon during? 4350 to 3450 cal. yr BP contemporaneous to displacement of the Indus valley civilization. Quaternary Int., 2018, 482, 83–92.
  • Chakraborty, S., Bhattacharya, S. K., Ranhotra, P. S., Bhattacharyya, A. and Bhushan, R., Palaeoclimatic scenario during Holocene around Sangla valley, Kinnaur northwest Himalaya based on multi proxy records. Curr. Sci., 2006, 91(6), 777–782.
  • Yadav, R. R., Gupta, A. K., Kotlia, B. S., Singh, V., Misra, K. G., Yadava, A. K. and Singh, A. K., Recent wetting and glacier expansion in the northwest Himalaya and Karakoram. Sci. Rep., 2017, 7(1), 6139.

Abstract Views: 247

PDF Views: 85




  • Rapid Lake Level Fall in Pangong Tso (lake) in Ladakh, NW Himalaya: A Response of Late Holocene Aridity

Abstract Views: 247  |  PDF Views: 85

Authors

Pradeep Srivastava
Wadia Institute of Himalayan Geology, Dehradun 248 001, India
Anil Kumar
Wadia Institute of Himalayan Geology, Dehradun 248 001, India
Randheer Singh
Birbal Sahni Institute of Palaeosciences, Lucknow 226 007, India
Oshin Deepak
Department of Geology, Lucknow University, Lucknow 226 007, India
Arjit M. Kumar
Department of Geology, Lucknow University, Lucknow 226 007, India
Yogesh Ray
National Centre for Polar and Ocean Research, Goa 403 802, India
R. Jayangondaperumal
Wadia Institute of Himalayan Geology, Dehradun 248 001, India
Binita Phartiyal
Birbal Sahni Institute of Palaeosciences, Lucknow 226 007, India
Poonam Chahal
Wadia Institute of Himalayan Geology, Dehradun 248 001, India
Pankaj Sharma
Wadia Institute of Himalayan Geology, Dehradun 248 001, India
Rupa Ghosh
Wadia Institute of Himalayan Geology, Dehradun 248 001, India
Naresh Kumar
Department of Geology, HNB Garhwal University, Srinagar 249 161, India
Rajesh Agnihotri
Birbal Sahni Institute of Palaeosciences, Lucknow 226 007, India

Abstract


Pangong Tso is a brackish water lake that lies along Pangong strand of the Karakoram strike–slip fault in arid Trans Himalayan region. The geomorphic mapping along the periphery of the lake suggested the presence of four palaeolake level strands located at 6, 4.8, 3.8 and 1.25 m above the present lake level. The gullied periphery expose relict deltaic sediments where sedimentological study enabled us to identify four deltaic lobes that make a classic Gilbert-type delta with well-developed top-set, fore-set and bottom-set. The top-set of the stratigraphically oldest delta lobe that corresponds to the highest lake level shows the presence of freshwater molluscs identified as Radix and a burnt sediment layer (hearth). The charcoal derived from this layer yielded 14C date as 1.7 ka BP and six luminescence ages from different delta lobes suggested that delta evolution and lake level fall of ~6 m took place between ~2–1 ka. Review of palaeoclimate record available from NW Himalaya and Pangong Tso suggests that late Holocene aridity might be responsible for this rapid lake level fall. Sclerochronological analysis carried out on 54 subsamples from three Radix specimens suggested that the modern type of seasonal conditions may have prevailed at ~1.7 ka BP.

Keywords


Ladakh Himalaya, Lake-Delta, Late Holocene Aridity, Pangong Tso, Sclerochronological Analysis.

References





DOI: https://doi.org/10.18520/cs%2Fv119%2Fi2%2F219-231