Open Access Open Access  Restricted Access Subscription Access

Millennial to Quasi-Decadal Variability in Antarctic Climate System as Evidenced from High-resolution Ice Core Records


Affiliations
1 National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt of India), Headland Sada, Vasco da Gama, Goa 403 804, India
 

The Antarctic climate system fluctuated through glacial–interglacial and millennial–centennial–decadal timescales in the past, closely coupled with other components of the global climate system. Analysis of ice core records offers critical insights on the millennial, centennial and decadal scale climate processes in Antarctica and its tropical linkages. Recent studies have demonstrated that annually-resolved high-resolution ice core records offer the best possible means to understand the quasi-decadal climate variability during the last millennia, when both natural and anthropogenic forcing influenced the climate system. This study discusses the quasi-decadal Antarctic climate variability in response to the solar forcing as well as the decadal to multidecadal climate modes like the Southern Annular Mode, El Niño-Southern Oscillation and the Pacific Decadal Oscillation, with special emphasis on the Indian ice core studies.

Keywords

Antarctica, Decadal Climate Variability, El Niño-southern Oscillation, Ice Core, Pacific Decadal Oscillation, Southern Annular Mode.
User
Notifications
Font Size

  • Turner, J. et al., Antarctic climate change during the last 50 years. International. J. Climatol., 2005, 25, 279–294.
  • Turner, J., Lachlan-Cope, T. A., Colwell, S. R., Marshall, G. J. and Connolley, W. M., Significant warming of the Antarctic winter troposphere. Science, 2006, 311, 1914–1917.
  • Turner, J. et al., Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 2009, 36, L08502.
  • Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M. and Karoly, D. J., Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 2011, 4, 741–749.
  • Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C. and Shindell, D. T., Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 2009, 457, 459–462; doi:10.1038/nature07669.
  • Bromwich, D. H. et al., Central West Antarctica among most rapidly warming regions on Earth. Nature Geosci., 2013, 6, 139– 145; doi:10.1038/ngeo1671.
  • Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. and Rind, D., Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 2008, 113, C3.
  • Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. and Phillips, T., The influence of the Amundsen–Bellingshausen seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 2013, 26, 6633–6648.
  • Thompson, D. W. J. and Wallace, J. M., Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Climate, 2000, 13, 1000–1016.
  • Marshall, G. J., Trends in the southern annular mode from observations and reanalyses. J. Climate, 2003, 16, 4134–4143.
  • Lefebvre, W., Goosse, H., Timmermann, R. and Fichefet, T., Influence of the Southern Annular Mode on the sea ice-ocean system. J. Geophys. Res., 2004, 109, C09005; doi:10.1029/ 2004JC002403.
  • Thompson, D. W. J. and Solomon, S., Interpretation of recent southern hemisphere climate change. Science, 2002, 296(5569), 895–899; doi:10.1126/science.1069270.
  • Turner, J. et al., Antarctic climate change and the environment: an update. Polar Rec., 2013, 50(3), 237–259.
  • Ding, Q., Steig, E. J., Battisti, D. S. and Kuttel, M., Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci., 2011, 4, 398–403.
  • Schneider, D. P., Okumura, Y. and Deser, C., Observed Antarctic interannual climate variability and tropical linkages. J. Climate, 2012, 25(12), 4048–4066; doi:10.1175/jcli-d-11-00273.1.
  • Bromwich, D. H., Rogers, A. N., Kållberg, P., Cullather, R. I., White, J. W. C. and Kreutz, K. J., ECMWF analyses and reanalyses depiction of ENSO signal in Antarctic precipitation. J. Climate, 2000, 13, 1406–1420.
  • Turner, J., The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 2004, 24, 1–31; doi:10.1002/joc.965.
  • Krinner, G., Genthon, C. and Jouzel, J., GCM analysis of local influences on ice core delta signals. Geophys. Res. Lett., 1997, 24, 2825–2828; https://doi.org/10.1029/97gl52891.
  • Casado, M. et al., Archival processes of the water stable isotope signal in East Antarctic ice cores. The Cryosphere, 2018, 12, 1745–1766; https://doi.org/10.5194/tc-12-1745-2018.
  • Münch, T. and Laepple, T., What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores? Clim. Past, 2018, 14, 2053–2070; https://doi.org/10.5194/ cp-14-2053-2018.
  • Naik, S. S., Thamban, M., Laluraj, C. M., Redkar, B. L. and Chaturvedi, A., A century of climate variability in central Dronning Maud Land, East Antarctica, and its relation to southern annular mode and El Niño; southern oscillation. J. Geophys. Res., 2010, 115(D16102), 1–12; doi:10.1029/2009JD013268.
  • Thamban, M., Naik, S. S., Laluraj, C. M., Chaturvedi, A. and Ravindra, R., Antarctic climate variability during the past few centuries based on ice core records from coastal Dronning Maud Land and its implications on the recent warming. In Earth System Processes and Disaster Management (eds Sinha, R. and Ravindra, R.), Society of Earth Scientists Series, Springer, 2013, vol. XII, p. 239.
  • Divine, D. V. et al., Tropical Pacific-high latitude south Atlantic teleconnections as seen in δ 18O variability in Antarctic coastal ice cores. J. Geophys. Res., 2009, 114(D11); doi:10.1029/2008 jd010475.
  • Fischer, H. et al., Palaeoclimate constraints on the impact of 2°C anthropogenic warming and beyond. Nat. Geosci., 2018; https://doi.org/10.1038/s41561-018-0146-0.
  • Hays, J. D., Imbrie, J. and Shackleton, N. J., Variations in the Earth’s orbit: pacemaker of the ice ages. Science, 1976, 194, 1121–1131.
  • Jouzel, J. et al., Orbital and millenial Antarctic climate variability over the past 800,000 years. Science, 2007, 317, 793–796.
  • Fischer, H. et al., Where to find 1.5 million yr old ice for the IPICS ‘Oldest-Ice’ ice core. Climate Past, 2013, 9, 2489–2505.
  • Abram, N. J., Past warming events in the Arctic linked to shifting winds in the Antarctic. Nature, 2018, 563, 630–631.
  • Masson-Delmotte, V. et al., A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modeling. J. Climate, 2008, 21(13), 3359–3387; doi:10.1175/2007jcli2139.1.
  • Luthi, D. et al., High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 2008, 453(7193), 379–382; doi:10.1038/nature06949.
  • EPICA Community Members, One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444/9, 195–198.
  • Stocker, T. F. and Johnsen, S. J., A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 2003, 18, 1087; correction 20, PA1002 (2005).
  • Pedro, J. B. et al., Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev., 2018, 192, 27–46.
  • Buizert, C. et al., Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 2018, 563, 681–685.
  • Medhaug, I. M., Slope, B., Fischer, E. M. and Knutti, R., Reconciling controversies about the ‘global warming hiatus’. Nature, 2017, 545, 41–47.
  • Cassou, C. et al., Decadal climate variability and predictability: challenges and opportunities. Bull. Am. Meteor. Soc., 2018, 99, 479–490.
  • Kravtsov, S. C. Grimm and Gu, S., Global-scale multidecadal variability missing in the state-of-the-art climate models. Nature Clim. Atmos. Sci., 2018, 1, 34; doi:10.1038/s41612-018-0044-6.
  • Genthon, C. and Cosme, E., Intermittent signature of ENSO in west-Antarctic precipitation. Geophys. Res. Lett., 2003, 30, 2081; doi:10.1029/2003GL018280.
  • Fogt, R. L. and Bromwich, D. H., Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 2006, 19, 979– 997.
  • Schneider, D. P., Steig, E. J., van Ommen, T. D., Bitz, C. M., Dixon, D., Mayewski, P. A. and Jones, J. M., Antarctic temperatures over the past two centuries, from ice cores. Geophys. Res. Lett., 2006, 33, L16707; doi:10.1029/2006GL027057.
  • Chylek, P., Folland, C. K., Lesins, G. and Dubey, M. K., Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett., 2010, 37, L08703; doi:10.1029/ 2010GL042793.
  • Laluraj, C. M., Thamban, M., Naik, S. S., Redkar, B. L., Chaturvedi, A. and Ravindra, R., Nitrate records of a shallow ice core from East Antarctica: atmospheric processes, preservation and climatic implications. The Holocene, 2011, 21, 351–356.
  • Rahaman, W., Thamban, M. and Laluraj, C. M., Twentieth century sea ice variability in the Weddell Sea and its effect on moisture transport: evidence from a coastal East Antarctic ice core record. The Holocene, 2016, 26, 338–349.
  • Rahaman, W., Chatterjee, S., Ejaz, T. and Thamban, M., Increased influence of ENSO activity on Antarctic climate variability in response to the greenhouse forcing since the industrial era. Sci. Rep., 2019, 9, 6006; https://doi.org/10.1038/s41598-019-42499-x.
  • Mayewski, P. A. et al., Solar forcing of the polar atmosphere. Ann. Glaciol., 2005, 41, 147–154.
  • Mayewski, P. A. et al., State of the Antarctic and Southern Ocean climate system. Rev. Geophys., 2009, 47(RG1003), 1–38.
  • Stenni, B. et al., Antarctic climate variability on regional and continental scales over the last 2000 years. Clim. Past., 2017, 13(11), 1609–1634; doi:10.5194/cp-13-1609.
  • Thomas, E. R. et al., Regional Antarctic snow accumulation over the past 1000 years. Clim. Past., 2017, 13, 1491–1513.
  • Kuroda, Y., Deushi, M. and Shibata, K., Role of solar activity in the troposphere-stratosphere coupling in the Southern Hemisphere winter. Geophys. Res. Lett., 2007, 34, L21704; doi:10.1029/ 2007GL030983.
  • Kuroda, Y. and Yamazaki, K., Influence of the solar cycle and QBO modulation on the southern annular mode. Geophys. Res. Lett., 2010, 37, L12703; doi:10.1029/2010GL043252.
  • Bertler, N. A. N. et al., Solar forcing recorded byaerosol concentrations in coastal Antarctic glacier ice, McMurdo Dry Valleys. Ann. Glaciol., 2005, 41, 52–56.
  • Mayewski, P. A. et al., The International Trans-Antarctic Scientific Expedition (ITASE): an overview. Ann. Glaciol., 2005, 41(1), 180–185.
  • Mayewski, P. A. et al., Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes. Quatern. Sci. Rev., 2017, 155, 50–66.
  • Bard, E., Raisbeck, G., Yiou, F. and Jouzel, J., Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus, 2000, 52, 985–992.
  • Palmer, A. S., Ice-core evidence for a small solar-source of atmospheric nitrate. Geophys. Res. Lett., 2001, 28(10), 1953– 1956.
  • Wolff, E. W. and Mulvaney, R., Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core. J. Geophys. Res., 2000, 105(16), 20565–20572.
  • Kwok, R. and Comiso, J. C., Southern ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Climate, 2002, 15, 487–501.
  • Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J. and England, M. H., Evolution of the southern annular mode during the past millennium. Nat. Clim. Change, 2014, 4, 564; doi:10.1038/nclimate2235.
  • Jones, J. M. et al., Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change, 2016, 6, 917– 926.
  • Hessl, A., Allen, K. J., Vance, T., Abram, N. J. and Saunders, K. M., Reconstructions of the southern annular mode (SAM) during the last millennium. Prog. Phys. Geogr. Earth Environ., 2017, 41(6), 834–849.
  • Schneider, D. P., Steig, E. J. and Comiso, J. C., Recent climate variability in Antarctica from satellite-derived temperature data. J. Climate, 2004, 17, 1569–1583.
  • Marshall, G. J., Battista, S., Naik, S. S. and Thamban, M., Analysis of a regional change in the sign of the SAM–temperature relationship in Antarctica. Climate Dyn., 2009; doi:10.1007/s00382009-0682-9.
  • Laluraj, C. M., Thamban, M. and Satheesan, K., Dust and associated geochemical fluxes in an ice core from the coastal East Antarctica and its linkages with Southern hemisphere climate variability. Atmosp. Environ., 2014, 90, 23–32.
  • Laluraj, C. M. et al., Enhanced dust influx to South Atlantic sector of Antarctica during the late-20th century: causes and contribution to radiative forcing. J. Geophys. Res. (Atmos.), 2020, 125, e2019JD030675.
  • McConnell, J. R., Aristarain, A. J., Banta, J. R., Edwards, P. R. and Simões, J. C., 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proc. Natl. Acad. Sci., 2007, 104, 5743–5748; doi:10.1073/pnas.0607657104.
  • PAGES 2k Consortium, Continental-scale temperature variability during the last two millennia. Nature Geosci., 2013, 6, 339–346.
  • Zhang, Y., Wallace, J. M. and Battisti, D. S., ENSO-like interdecadal variability: 1900–93. J. Climate, 1997, 10, 1004–1020.
  • Trenberth, K. E., Branstator, G., Karoly, D., Kumar, A., Lau, N. C. and Ropelewski, C., Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 1998, 103, 14291–14324.
  • Okumura, Y. M. and Deser, C., Asymmetry in the duration of El Nin͂o and La Nin͂a. J. Climate, 2010, 23(21), 5826–5843.
  • Mo, K. C. and Ghil, M., Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 1987, 44, 877–902.
  • Bromwich, D. H., Monaghan, A. J. and Guo, Z., Modeling the ENSO modulation of Antarctic climate in the late 1990s with Polar MM5. J. Climate, 2004, 17, 109–132.
  • Gregory, S. and Noone, D., Variability in the teleconnection between the El Niño–Southern oscillation and West Antarctic climate deduced from West Antarctic ice core isotope records. J. Geophys. Res., 2008, 113, D17110; doi:10.1029/2007JD009107.
  • Wang, G. and Cai, W., Climate-change impact on the 20th-century relationship between the Southern Annular Mode and globalmean temperature. Sci. Rep., 2013, 3, 2039; doi:10.1038/srep02039.
  • Turner, J. et al., Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 2016, 535, 411.
  • Clem, K. R. and Fogt, R. L., South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res., 2015, 120, 2773– 2792; doi:https://doi.org/10.1002/2014JD022940.
  • Goodwin, B. P., Mosley-Thompson, E., Wilson, A. B., Porter, S. E. and Sierra-Hernandez, M. R., Accumulation variability in the Antarctic Peninsula: the role of large-scale atmospheric oscillations and their interactions. J. Climate, 2016, 29, 2579–2596.
  • Okumura, Y. M., Schneider, D., Deser, C. and Wilson, R., Decadalinterdecadal climate variability over Antarctica and linkages to the tropics: analysis of ice core, instrumental, and tropical proxy data. J. Climate, 2012, 25, 7421–7441; doi:10.1175/JCLI-D-1200050.1.
  • Schulz, M. and Mudelsee, M., REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci., 2002, 28, 421–426.
  • Jones, J. M. et al., Historical SAM variability, Part I: Centurylength seasonal reconstructions. J. Climate, 2009, 22, 5319–5345.

Abstract Views: 261

PDF Views: 110




  • Millennial to Quasi-Decadal Variability in Antarctic Climate System as Evidenced from High-resolution Ice Core Records

Abstract Views: 261  |  PDF Views: 110

Authors

Meloth Thamban
National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt of India), Headland Sada, Vasco da Gama, Goa 403 804, India
Waliur Rahaman
National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt of India), Headland Sada, Vasco da Gama, Goa 403 804, India
C. M. Laluraj
National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt of India), Headland Sada, Vasco da Gama, Goa 403 804, India

Abstract


The Antarctic climate system fluctuated through glacial–interglacial and millennial–centennial–decadal timescales in the past, closely coupled with other components of the global climate system. Analysis of ice core records offers critical insights on the millennial, centennial and decadal scale climate processes in Antarctica and its tropical linkages. Recent studies have demonstrated that annually-resolved high-resolution ice core records offer the best possible means to understand the quasi-decadal climate variability during the last millennia, when both natural and anthropogenic forcing influenced the climate system. This study discusses the quasi-decadal Antarctic climate variability in response to the solar forcing as well as the decadal to multidecadal climate modes like the Southern Annular Mode, El Niño-Southern Oscillation and the Pacific Decadal Oscillation, with special emphasis on the Indian ice core studies.

Keywords


Antarctica, Decadal Climate Variability, El Niño-southern Oscillation, Ice Core, Pacific Decadal Oscillation, Southern Annular Mode.

References





DOI: https://doi.org/10.18520/cs%2Fv119%2Fi2%2F255-264