Open Access
Subscription Access
Methylammonium Lead Iodide:The Crown Prince of Solar Cell Materials
In this article, important properties of methylammonium lead iodide responsible for its success as a solar-cell material are discussed. We deliberate upon the rationale behind structural stability of perovskite, its suitable optical properties, low exciton binding energy, solution processability, high mobility, defect tolerance and low recombination loss, which have made the material truly special and unique.
Keywords
Methylammonium Lead Iodide, Perovskites, Solar Cell Materials, Structural Stability.
User
Font Size
Information
- Extance, A., Perovskites on trial. Nature, 2019, 570(7762), 429– 432.
- Fakharuddin, A., De Rossi, F., Watson, T. M., Schmidt-Mende, L. and Jose, R., Research update: behind the high efficiency of hybrid perovskite solar cells. APL Mater., 2016, 4(9), 091505.
- Leguy, A. M. A. et al., The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nature Commun., 2015, 6, 7124.
- Li, Z., Yang, M. J., Park, J. S., Wei, S. H., Berry, J. J. and Zhu, K., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater., 2016, 28(1), 284–292.
- Zhou, Y. Y., Zhou, Z. M., Chen, M., Zong, Y. X., Huang, J. S., Pang, S. P. and Padture, N. P., Doping and alloying for improved perovskite solar cells. J. Mater. Chem. A, 2016, 4(45), 17623–17635.
- Shockley, W. and Queisser, H. J., Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys., 1961, 32(3), 510–519.
- Leguy, A. M. A. et al., Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale, 2016, 8(12), 6317–6327.
- Huang, W. et al., Observation of unusual optical band structure of CH3NH3PbI3 perovskite single crystal. ACS Photonics, 2018, 5(4), 1583–1590.
- Endres, J. et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. J. Phys. Chem. Lett., 2016, 7(14), 2722–2729.
- Xiao, Z., Song, Z. and Yan, Y., From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater., 2019, 31(47), 1803792.
- Park, N. G., Methodologies for high efficiency perovskite solar cells. Nano Converg., 2016, 3, 15.
- Chatterjee, S. and Pal, A. J., Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells.
- J. Mater. Chem. A, 2018, 6(9), 3793–3823.
- Yang, Z. et al., Unraveling the exciton binding energy and the dielectric constant in single-crystal methylammonium lead triiodide perovskite. J. Phys. Chem. Lett., 2017, 8(8), 1851–1855.
- Rolin, C., Kang, E., Lee, J. H., Borghs, G., Heremans, P. and Genoe, J., Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method. Nature Commun., 2017, 8, 14975.
- Mante, P. A., Stoumpos, C. C., Kanatzidis, M. G. and Yartsev, A., Electron-acoustic phonon coupling in single crystal CH3NH3PbI3 perovskites revealed by coherent acoustic phonons. Nature Commun., 2017, 8, 14398.
- Even, J., Pedesseau, L., Jancu, J. M. and Katan, C., Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett., 2013, 4(17), 2999– 3005.
- Giorgi, G. and Yamashita, K., Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J. Mater. Chem. A, 2015, 3(17), 8981–8991.
- Chen, Y. et al., Tuning the electronic structures of all-inorganic lead halide perovskite CsPbI3 via heterovalent doping: a firstprinciples investigation. Chem. Phys. Lett., 2019, 722, 90–95.
- Wang, Q., Shao, Y. C., Xie, H. P., Lyu, L., Liu, X. L., Gao, Y. L. and Huang, J. S., Qualifying composition dependent p and n selfdoping in CH3NH3PbI3. Appl. Phys. Lett., 2014, 105(16), 163508.
- Chen, B., Rudd, P. N., Yang, S., Yuan, Y. B. and Huang, J. S., Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev., 2019, 48(14), 3842–3867.
- Yin, W. J., Shi, T. T. and Yan, Y. F., Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett., 2014, 104(6), 063903.
- Kaur, K., Kumar, N. and Kumar, M., Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects. J. Mater. Chem. A, 2017, 5(7), 3069–3090.
- Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. and Herz, L. M., High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater., 2014, 26(10), 1584– 1589.
- Zheng, F., Tan, L. Z., Liu, S. and Rappe, A. M., Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3Pbl3. Nano Lett., 2015, 15(12), 7794–7800.
- Kepenekian, M. and Even, J., Rashba and Dresselhaus couplings in halide perovskites: accomplishments and opportunities for spintronics and spin-orbitronics. J. Phys. Chem. Lett., 2017, 8(14), 3362–3370.
- Zhang, X., Shen, J. X. and Van de Walle, C. G., Threedimensional spin texture in hybrid perovskites and its impact on optical transitions. J. Phys. Chem. Lett., 2018, 9(11), 2903–2908.
- Maiti, A., Khatun, S. and Pal, A. J., Rashba band splitting in CH3NH3PbI3: an insight from spin polarized scanning tunneling spectroscopy. Nano Lett., 2020, 20(1), 292–299.
Abstract Views: 347
PDF Views: 103