Open Access Open Access  Restricted Access Subscription Access

Prediction of Potato High-Yield Zones of a Field:Bivariate Frequency Ratio Technique


Affiliations
1 Precision Agriculture Research Chair, King Saud University, Riyadh, Saudi Arabia
2 Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
 

Bivariate frequency ratio (BFR) technique was employed to determine high-yield zones in a 30 ha potato (Solanum tuberosum L.) field located in Wadi-Ad-Dawasir, Saudi Arabia. BFR was performed by inputting selected yield tendency factors (YTFs) and potato actual yield (YA). The YTFs were NDVI-derived from Sentinel-2 images, soil electrical conductivity, nitrogen, pH and texture. The obtained yield tendency map (YP) was assessed against (YA) using the area under the curve metric. Although low accuracy (41-58 %) was observed with the individual YTFs, high-yield zones were determined with an accuracy of 90% using the cumulative response of YTFs.

Keywords

Bivariate Frequency Ratio, Potato Field, Soil Parameters, Yield Prediction.
User
Notifications
Font Size

  • Jin, J. and Jiang, C., Spatial variability of soil nutrients and sitespecific nutrient management in the P.R. China. Comput. Electron. Agric., 2002, 36(2–3), 165–172; https://doi.org/10.1016/S0168 1699(02)00099-6.
  • Cerri, C. E. P. et al., Assessment of soil property spatial variation in an Amazon pasture: basis for selecting an agronomic experimental area. Geoderma, 2004, 123(1–2), 51–68; https://doi.org/10.1016/j.geoderma.2004.01.027.
  • Srinivasan, A. (ed.), Precision agriculture: an overview. In Handbook of Precision Agriculture Principles and Applications, CRC Press, Taylor and Francis, London, UK, 2006, pp. 3–15; ISBN 9781560229551.
  • Vauclin, M., Vieira, S. R., Bernard, R. and Hatfield, R., Spatial variability of surface temperature along two transects of a bare soil. Water Resour. Res., 1982, 18(6), 1677–1686; https://doi.org/ 10.1029/WR018i006p01677.
  • Mulla, D. J., Mapping and managing spatial patterns in soil fertility and crop yield. In Soil Specific Crop Management (eds Robert, P. C., Larson, W. E. and Rust, R.), American Society of Agronomy, Madison, WI, 1993, pp. 15–26.
  • Vieira, S. R., Millete, J., Clark, T. G. and Dan, R. W., Handbook for geostatistical analysis of variability in soil and climate data. Topicos Ci. Solo, 2002, 2, 1–45.
  • Rabbi, S. M. F., Roy, B. R., Miah, M. M., Amin, M. S. and Khandakar, T., Spatial variability of physical soil quality index of an agricultural field. Appl. Environ. Soil Sci., 2014, 379012; http://dx.doi.org/10.1155/2014/379012.
  • Tola, E., Al-Gaadi, K. A., Madugundu, R., Zeyada, A. M., Kayad, A. G. and Biradar, C. M., Characterization of spatial variability of soil physicochemical properties and its impact on Rhodes grass productivity. Saudi J. Biol. Sci., 2017, 24(2), 421–429; https://doi.org/10.1016/j.sjbs.2016.04.013.
  • Matheron, G., The theory of regionalized variables and its application. Les Cahiers du Centre de Morphologie Mathematique, Fontainebleau. The Ecole Nationale Superieure des Mines de Paris, 1971, 5, 211; http://cg.ensmp.fr/bibliotheque/public/MATHERON_ Ouvrage_00167.pdf
  • Rockstrom, J., Barron, J., Brouwer, J., Galle, S. and De Rouw, A., On-farm spatial and temporal variability of soil and water in pearl millet cultivation. Soil Sci. Soc. Am. J., 1997, 63(5), 1308–1319; doi:10.2136/sssaj1999.6351308x.
  • Gatson, L. A., Locke, M. A., Zablotowicz, R. M. and Reddy, K. N., Spatial variability of soil properties and weed populations in the Mississippi Delta. Soil Sci. Soc. Am. J., 2001, 65(2), 449–459; doi:10.2136/sssaj2001.652449x.
  • Vieira, S. R., Spatial variability of clay content, silt content and chemical properties within an experimental plot of a dusky red latosol in Campinas, State of Sao Paulo, Brazil. Bragantia, 1997, 56(1), 181–190; http://dx.doi.org/10.1590/S0006-8705199700010 0019.
  • Chung, S. O., Sung, J. H., Sudduth, K. A., Drummond, S. T. and Hyun, B. K., Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field. In Proceedings of the Fifth International Conference on Precision Agriculture (eds Robert, P. C., Rust, R. H. and Larson, W. E.), American Society of Agronomy, Madison, WI, USA, 2001, pp. 1–14.
  • Fulton, J. P., Wells, L. G., Shearer, S. A. and Barnhisel, R. I., Spatial variation of soil physical properties: a precursor to precision tillage. In American Society of Agricultural Engineers, Paper No. 961002, International Meeting, Phoenix, Arizona, USA, 14– 18 July 1996.
  • Wells, L. G., Shearer, S. A., Fulton, J. P. and Murdock, L. W., Assessment of remote sensing for implementation of precision tillage. In American Society of Agricultural Engineers, Paper No. 001084, International Meeting, Milwaukee, WI, USA, 9–12 July 2000.
  • Mzuku, M., Khosla, R., Reich, R., Inman, D., Smith, F. and Mac Donald, L., Spatial variability of measured soil properties across site-specific management zones. Soil Sci. Soc. Am. J., 2005, 69(5), 1572–1579; doi:10.2136/sssaj2005.0062.
  • Inman, D. J., Khosla, R. and Westfall, D. G., Nitrogen uptake across site-specific management zones in irrigated corn production systems. Agron. J., 2005, 97(1), 169–176; doi:10.2134/agronj2005.0169.
  • Cambardella, C. A. et al., Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 1994, 58(5), 1501– 1511; doi:10.2136/sssaj1994.03615995005800050033x.
  • Marques Jr, Jose, R. B. S. and Pereira, G. T., Variabilidade espacial de propriedades químicas e físicas de latossolos em áreas de cerrado sob cultivo de café, em Patrocínio, MG. In O estado-daarte da agricultura de precisão no Brasil, Capítulo III – Mapeamento da Produtividade e de Atributos de Solos e de Plantas (ed. Balastreire, L. A.), Piracicaba, ESALQ, 2000, pp. 105–112.
  • Khosla, R., Fleming, K., Delgado, J. A., Shaver, T. M. and Westfall, D. G., Use of site-specific management zones to improve nitrogen management for precision agriculture. J. Soil Water Conserv., 2002, 57(6), 513–518.
  • Fraisse, C. W., Sudduth, K. A., Kitchen, N. R. and Fridgen, J. J., Use of unsupervised clustering algorithms for delineating within field management zones. In American Society of Agricultural Engineers, Paper No. 993043, International Meeting, Toronto, Ontario, Canada, 18–21 July 1999.
  • Lee, S., Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ. Geol., 2007, 52(4), 615–623.
  • Pradhan, B., Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Sensing, 2010, 38(2), 301–320; https://doi.org/10.1007/s12524-010-0020-z.
  • Lepore, C., Kamal, S. A., Shanahan, P. and Bars, R. L., Rainfallinduced landslide susceptibility zonation of Puerto Rico. Environ. Earth Sci., 2012, 66(6), 1667–1681; doi:10.1007/s12665-011-0976-1.
  • Mohammady, M., Pourghasemi, H. R. and Pradhan, B., Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-ofevidence models. J. Asian Earth Sci., 2012, 61, 221–236; https://doi.org/10.1016/j.jseaes.2012.10.005.
  • Hassaballa, A. A., Althuwaynee, O. F. and Pradhan, B., Extraction of soil moisture from RADARSAT-1 and its role in the formation of the 6 December 2008 landslide at Bukit Antarabangsa, Kuala Lumpur. Arab. J. Geosci., 2014, 7(7), 2831–2840; https://doi.org/10.1007/s12517-013-0990-6.
  • Althuwaynee, O. F., Pradhan, B. and Lee, S., Application of an evidential belief function model in landslide susceptibility mapping. Comput. Geosci., 2012, 44, 120–135; https://doi.org/10.1016/j.cageo.2012.03.003.
  • Suzen, M. L. and Vedat, D. A., A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ. Geol., 2004, 45(5), 665–679; https://doi.org/10.1007/s00254-003-0917-8.
  • Al-Faifi, H. J. A., Evaluation of groundwater resources in Wajid aquifer in Wadi Dawasir area Southern Saudi Arabia using computer simulation. M Sc thesis, Department of Geology, College of Science, King Saud University, Kingdom of Saudi Arabia, 2005, pp. 3–9.
  • Al-Gaadi, K. A. et al., Prediction of potato crop yield using precision agriculture techniques. PLoS ONE, 2016, 11(9), e0162219; https://doi.org/10.1371/journal.pone.0162219.
  • Lynch, J. M. and Barbano, D. M., Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J. AOAC Int., 1999, 82, 1389–1398.
  • Bouyoucos, G. J., A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J., 1951, 43(9), 434– 438; doi:10.2134/agronj1951.00021962004300090005x.
  • Rouse Jr, J. W., Haas, R. H., Schell, J. A. and Deering, D. W., Monitoring vegetation systems in the Great Plain with ERTS. In Third ERTS-1 Symposium-volume 1: Technical Presentations (eds Fraden, S. C., Marcanti, E. P. and Becker, M. A.), NASA SP-351, Washington DC, USA, 1974, pp. 309–317.
  • Lee, S., Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sensing, 2005, 26(7), 1477–1491.
  • Sujatha, E. R., Rajamanickam, V., Kumaravel, P. and Saranathan, E., Landslide susceptibility analysis using probabilistic likelihood ratio model – a geospatial-based study. Arab. J. Geosci., 2013, 6(2), 429–440; https://doi.org/10.1007/s12517-011-0356-x.
  • Althuwaynee, O. F., Pradhan, B., Park, H. J. and Lee, J. H., A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 2014, 114, 21–36; https://doi.org/10.1016/j.catena.2013.10.011.
  • Allaire, S. E., Cambouris, A. N., Lafond, J. A., Lange, S. F., Pelletier, B. and Dutilleul, P., Spatial variability of potato tuber yield and plant nitrogen uptake related to soil properties. Agron. J., 2014, 106(3), 851–859.
  • Waterer, D., Impact of high soil pH on potato yields and grade losses to common scab. Can. J. Plant Sci., 2002, 82, 583–586.
  • Redulla, C. A., Davenport, J. R., Evans, R. G., Hattendorf, M. J., Alva, A. K. and Boydston, R. A., Relating potato yield and quality to field scale variability in soil characteristics. Am. J. Potato Res., 2002, 79(5), 317–323.

Abstract Views: 292

PDF Views: 109




  • Prediction of Potato High-Yield Zones of a Field:Bivariate Frequency Ratio Technique

Abstract Views: 292  |  PDF Views: 109

Authors

Khalid A. Al-Gaadi
Precision Agriculture Research Chair, King Saud University, Riyadh, Saudi Arabia
Abdalhaleem A. Hassaballa
Precision Agriculture Research Chair, King Saud University, Riyadh, Saudi Arabia
Rangaswamy Madugundu
Precision Agriculture Research Chair, King Saud University, Riyadh, Saudi Arabia
El-Kamil Tola
Precision Agriculture Research Chair, King Saud University, Riyadh, Saudi Arabia
Ronnel B. Fulleros
Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia

Abstract


Bivariate frequency ratio (BFR) technique was employed to determine high-yield zones in a 30 ha potato (Solanum tuberosum L.) field located in Wadi-Ad-Dawasir, Saudi Arabia. BFR was performed by inputting selected yield tendency factors (YTFs) and potato actual yield (YA). The YTFs were NDVI-derived from Sentinel-2 images, soil electrical conductivity, nitrogen, pH and texture. The obtained yield tendency map (YP) was assessed against (YA) using the area under the curve metric. Although low accuracy (41-58 %) was observed with the individual YTFs, high-yield zones were determined with an accuracy of 90% using the cumulative response of YTFs.

Keywords


Bivariate Frequency Ratio, Potato Field, Soil Parameters, Yield Prediction.

References





DOI: https://doi.org/10.18520/cs%2Fv119%2Fi6%2F992-1000