Open Access
Subscription Access
Composition of Magnetic Tunnel Junction-Based Magnetoresistive Random Access Memory for Field-Programmable Gate Array
In this study, the schematics for Magnetic Tunnel Junction-Magnetoresistive Random Access Memory (MTJ-MRAM) are designed and simulations are carried out in 45 and 90 nm Complementary Metal-Oxide Semiconductor (CMOS) Very Large Scale Integration (VLSI) technology using analog design environment. Other memory circuits like volatile Static Random Access Memory (SRAM) and non-volatile flash memory are designed and behavioural waveforms verified. The output behavioural characteristics of MTJMRAM are compared with that of SRAM and flash memory. The attributes like power and delay are calculated and compared with SRAM and flash memory circuits. The study was carried out in order to integrate the non-volatile memory with field-programmable gate array (FPGA) architecture and design a nonvolatile memory-based FPGA. MTJ-MRAM shows better performance than volatile SRAM and nonvolatile flash memory in terms of power and delay parameters.
Keywords
Behavioural Waveforms, Field-Programmable Gate Array, Magnetic Tunnel Junction, Memory Circuits.
User
Font Size
Information
Abstract Views: 400
PDF Views: 144