Open Access Open Access  Restricted Access Subscription Access

Composition of Magnetic Tunnel Junction-Based Magnetoresistive Random Access Memory for Field-Programmable Gate Array


Affiliations
1 Electronics and Communication Engineering Department, Jain (Deemed-to-be University), Bengaluru 560 112, India
2 Electronics and Communication Engineering Department, NMAMIT, Nitte, Udupi 574 110, India
 

In this study, the schematics for Magnetic Tunnel Junction-Magnetoresistive Random Access Memory (MTJ-MRAM) are designed and simulations are carried out in 45 and 90 nm Complementary Metal-Oxide Semiconductor (CMOS) Very Large Scale Integration (VLSI) technology using analog design environment. Other memory circuits like volatile Static Random Access Memory (SRAM) and non-volatile flash memory are designed and behavioural waveforms verified. The output behavioural characteristics of MTJMRAM are compared with that of SRAM and flash memory. The attributes like power and delay are calculated and compared with SRAM and flash memory circuits. The study was carried out in order to integrate the non-volatile memory with field-programmable gate array (FPGA) architecture and design a nonvolatile memory-based FPGA. MTJ-MRAM shows better performance than volatile SRAM and nonvolatile flash memory in terms of power and delay parameters.

Keywords

Behavioural Waveforms, Field-Programmable Gate Array, Magnetic Tunnel Junction, Memory Circuits.
User
Notifications
Font Size

Abstract Views: 248

PDF Views: 85




  • Composition of Magnetic Tunnel Junction-Based Magnetoresistive Random Access Memory for Field-Programmable Gate Array

Abstract Views: 248  |  PDF Views: 85

Authors

S. Hamsa
Electronics and Communication Engineering Department, Jain (Deemed-to-be University), Bengaluru 560 112, India
N. Thangadurai
Electronics and Communication Engineering Department, Jain (Deemed-to-be University), Bengaluru 560 112, India
A. G. Ananth
Electronics and Communication Engineering Department, NMAMIT, Nitte, Udupi 574 110, India

Abstract


In this study, the schematics for Magnetic Tunnel Junction-Magnetoresistive Random Access Memory (MTJ-MRAM) are designed and simulations are carried out in 45 and 90 nm Complementary Metal-Oxide Semiconductor (CMOS) Very Large Scale Integration (VLSI) technology using analog design environment. Other memory circuits like volatile Static Random Access Memory (SRAM) and non-volatile flash memory are designed and behavioural waveforms verified. The output behavioural characteristics of MTJMRAM are compared with that of SRAM and flash memory. The attributes like power and delay are calculated and compared with SRAM and flash memory circuits. The study was carried out in order to integrate the non-volatile memory with field-programmable gate array (FPGA) architecture and design a nonvolatile memory-based FPGA. MTJ-MRAM shows better performance than volatile SRAM and nonvolatile flash memory in terms of power and delay parameters.

Keywords


Behavioural Waveforms, Field-Programmable Gate Array, Magnetic Tunnel Junction, Memory Circuits.



DOI: https://doi.org/10.18520/cs%2Fv119%2Fi1%2F119-123