Open Access
Subscription Access
Effect Of SARS-CoV-2 Pandemic Induced Lockdown On The Aerosol Loading Over The Coastal State, Goa
The SARS-CoV-2 pandemic resulted in India imposing a nationwide lockdown on 22 March 2020, bringing all human activities to a complete halt. The current study focuses on the effect of lockdown on the abundance of atmospheric aerosols over Goa. The study focused on pre-lockdown, lockdown and period corresponding to lockdown in 2019. The AOD spectra depicted a decrease in the anthropogenically derived fine mode aerosols during the lockdown compared to the pre-lockdown period. Mean AOD500 for prelockdown and lockdown periods were 0.43 ± 0.19 and 0.53 ± 0.11 respectively. The higher AOD500 during lockdown was due to an increase in naturally derived coarse mode aerosols, which is further confirmed with the lower Ångström exponent values (1.04 ± 0.11). The mean black carbon mass concentration for the respective periods were 1990.45 ± 470.87 ng m–3 and 1109.71 ± 218.33 ng m–3, and the mean atmospheric forcing during the respective periods were 25.13 ± 5.72 W m–2, 27.31 ± 3.71 W m–2 and 30.81 ± 5.59 W m–2 respectively.
Keywords
Aerosol Optical Depth, Radiative Forcing, SARS-CoV-2.
User
Font Size
Information
- Zambrano-monserrate, M. A., Alejandra, M. and Sanchez-alcalde, L., Science of the total environment indirect effects of COVID-19 on the environment. Sci. Total Environ., 2020, 728, 138813.
- Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H. and Kota, S. H., Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ., 2020, 728, 138878.
- Charlson, R. J. et al., Climate forcing by anthropogenic aerosols. Science, 1992, 255, 423–430.
- Ramanathan, V., Crutzen, P. J., Kiehl, J. T. and Rosenfeld, D., Aerosols, climate, and the hydrological cycle. Science, 2001, 294, 2119–2124.
- Pope III, C. A. and Dockery, D. W., Health effects of fine particulate air pollution: lines that connect health effects of fine particulate air pollution: lines that connect. J. Air Waste Manage. Assoc., 2006, 56, 709–742.
- Shirodkar, S. and Menon, H. B., Aerosol optical properties over a coastal site in Goa, along the west coast of India. J. Atmos. SolarTerrestrial Phys., 2015, 130, 182–189.
- Menon, H. B., Shirodkar, S., Kedia, S., Ramachandran, S., Babu, S. and Moorthy, K. K., Temporal variation of aerosol optical depth and associated shortwave radiative forcing over a coastal site along the west coast of India. Sci. Total Environ., 2014, 468, 83–92.
- Morys, M. et al., Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. J. Geophys. Res. Atmos., 2001, 106, 14573–14582.
- Frouin, R. et al., Sun and sky radiance measurements and data analysis protocols. NASA/TM-2003-21621/Rev-Vol III, 60, 2003.
- Krishna Moorthy, K., Satheesh, S. K. and Krishna Murthy, B. V., Investigations of marine aerosols over the tropical Indian Ocean. J. Geophys. Res. Atmos., 1997, 102, 18827–18842.
- Ångström, A., Techniques of determining the turbidity of the atmosphere. Tellus, 1961, 13, 214–223.
- Hansen, A. D. A., Rosen, H. and Novakov, T., The aethalometer – an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ., 1984, 36, 191–196.
- Levelt, P. F. et al., Science objectives of the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens., 2006, 44, 1199– 1208.
- Hellerman, S. and Rosenstein, M., Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 1983, 13, 1093–1104.
- Draxler, R. R. and Hess, G. D., Description of the HYSPLIT_4 Modeling System. NOAA Technical Memorandum ERL ARL224, NOAA Air Resour. Lab. Silver Spring, MD, 2004, p. 28.
- Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D. and Ngan, F., NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc., 2015, 96, 2059–2077.
- Ricchiazzi, P., Yang, S., Gautier, C. and Sowle, D., SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Am. Meteorol. Soc., 1998, 79, 2101–2114.
- Hess, M., Koepke, P. and Schult, I., Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc., 1998, 79, 831–844.
- Nair, S. K., Rajeev, K. and Parameswaran, K., Wintertime regional aerosol distribution and the influence of continental transport over Indian Ocean. J. Atmos. Solar-Terrestrial Phys., 2003, 65, 149–165.
- Moorthy, K. K. et al., Wintertime spatial characteristics of boundary layer aerosols over peninsular India. J. Geophys. Res. D Atmos., 2005, 110, 1–11.
- Moorthy, K. K., Satheesh, S. K., Babu, S. S. and Dutt, C. B. S., Integrated campaign for aerosols, gases and radiation budget (ICARB): an overview. J. Earth Syst. Sci., 2008, 117, 243–262.
- Eck, T. F. et al., Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos., 1999, 104, 31333–31349.
- Toledano, C. et al., Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr., 2007, 133, 795–807.
- Gogoi, M. M., Suresh Babu, S., Krishna Moorthy, K., Manoj, M. R. and Chaubey, J. P., Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust. Atmos. Environ., 2013, 73, 92–102.
Abstract Views: 379
PDF Views: 147