Open Access
Subscription Access
Enhanced Insecticide-resistance Spectrum in Green Lacewing Predator, Chrysoperla zastrowi sillemi (strain PTS-8) And Its Potential Role In The Management Of Sucking Pests Of Cotton
The green lacewing or aphid lion, Chrysoperla zastrowi sillemi (Esben-Petersen) is an important predator of sucking pests, and eggs and neonate larvae of lepiodopteran pests under many crop ecosystems of India. In the present study, enhanced insecticide resistance spectrum in an insecticide-resistant population of C. zastrowi sillemi (strain PTS-8) was evaluated against four commonly used insecticides on cotton. The insecticide resistant C. zastrowi sillemi PTS-8 showed 16.4-, 14.8-, 12.7- and 7.2-fold resistance against chlorpyriphos 20% EC, cypermethrin 10% EC, acetamipirid 20% SP and chlorantraniliprole 18.5% SC respectively, compared to the susceptible strain. Biochemical assays revealed an elevated level of three major detoxifying enzymes, viz. carboxylesterase (1.48-fold), glutathione S-transferase (1.27-fold) and cytochrome p450 monooxygenase (1.36-fold) in PTS-8 strain compared to the susceptible strain. The field survival and biocontrol potential of PTS-8 strain were significantly better on cotton plants treated with recommended dose of insecticides. The study indicated the potential role of insecticide-resistant natural enemies under biointensive IPM programmes to avoid compatibility conflict with insecticides.
Keywords
Chrysoperla zastrowi sillemi, Cotton, Detoxifying Enzymes, Insecticide Resistance, Sucking Pests.
User
Font Size
Information
- Dhandapani, N., Pallavi, S. and Mishra, G., Chrysopids. In Ecofriendly Pest Management for Food Security (ed. Omkar), Elsevier, San Diego, USA, 2016, pp. 311–327.
- Henry, C. S., Brooks, S. J., Johnson, J. B., Venkatesan, T. and Duelli, P., The most important lacewing species in Indian agricultural crops, Chrysoperla sillemi (Esben-Petersen), is a subspecies of Chrysoperla zastrowi (Esben-Petersen) (Neuroptera: Chrysopidae). J. Nat. Hist., 2010, 44, 2543–2555; https://doi.org/ 10.1080/00222933.2010.499577.
- Pappas, M. L., Broufas, G. D. and Koveos, D. S., Chrysopid predators and their role in biological control. J. Entomol., 2011, 8(3), 301–326; https://doi.org/10.3923/je.2011.301.326.
- Senior, L. J. and McEwen, P. K., The use of lacewings in biological control. In Lacewings in the Crop Environment (eds McEwen, P. K., New, T. R. and Whittington, A. E.), Cambridge University Press, Cambridge, UK, 2011, pp. 296–299.
- Venkatesan, T., Mahiba, S. H., Jalali, S., Ramya, S. and Pratibha, M., Detection of insecticide resistance and mechanisms of resistance in field populations of Chrysoperla zastrowi sillemi (Neuroptera: Chrysopidae) collected from different geographical locations in India. J. Biol. Control, 2017, 31(3), 61–68; https:// doi.org/10.18311/jbc/2017/16333.
- Roush, R. T. and Daly. J. C., The role of population genetics in resistance research and management. In Pesticide Resistance in Arthropods (eds Roush, R. T. and Tabashnik B. E.), Springer, USA, 1990, pp. 97–152.
- Pree, D. J., Archibald, D. E. and Morrison, R. K., Resistance to insecticides in the common green lacewing Chrysoperla carnea (Neuroptera: Chrysopidae) in southern Ontario. J. Econ. Entomol., 1989, 82(1), 29–34; https://doi.org/10.1093/jee/82.1.29.
- Daane, K. M., Ecological studies of released lacewings in crops. In Lacewings in the Crop Environment (eds McEwen, P. K., New, T. R. and Whittington, A. E.), Cambridge University Press, Cambridge, UK, 2001, pp. 338–345.
- Mansoor, M. M. and Shad, S. A., Genetics, cross-resistance and realized heritability of resistance to acetamiprid in generalist predator, Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae). Egypt. J. Biol. Pest Control, 2020, 30, 23; https://doi.org/10.1186/ s41938-020-0213-x.
- Easterbrooka, M. A., Fitzgeralda, J. D. and Solomona, M. G., Suppression of aphids on strawberry by augmentative releases of larvae of the lacewing Chrysoperla carnea (Stephens), Biocontrol Sci. Technol., 2006, 16(9), 893–900; https://doi.org/10.1080/ 09583150600827850.
- Venkatesan, T., Singh, S. P. and Jalali, S. K., Rearing of Chrysoperla carnea (Neuroptera: Chrysopidae) on semi-synthetic diet and its predatory efficiency against cotton pests. Entomon, 2000, 25(2), 81–89.
- Venkatesan, T., Singh, S. P., Jalali, S. K. and Joshi, S., Evaluation of predatory efficiency of Chrysoperla carnea (Stephens) reared on artificial diet against tobacco aphid Myzus persicae (Sultzer) in comparison with other predators. J. Entomol. Res., 2002, 26(3), 193–196.
- Panini, M., Manicardi, G. C., Moores, G. D. and Mazzoni, E., An overview of the main pathways of metabolic resistance in insects. Invertebr. Surviv. J., 2016, 13(1), 326–335; https://doi.org/ 10.25431/1824-307X/isj.v13i1.326-335.
- Oakeshott, J. G., Claudianos, C., Campbell, P. M., Newcomb, R. D. and Russell, J. R., Biochemical genetics and genomics of insect esterases. In Comprehensive Molecular Insect Science (eds Gilbert, L. I., Iatro, K. and Gill, S.), Elsevier, The Netherlands, 2010, pp. 1–73.
- Pathan, A. K., Sayyed, A. H., Aslam, M., Razaq, M., Jilani, G. and Saleem, M. A. Evidence of field-evolved resistance to organophosphates and pyrethroids in Chrysoperla carnea (Neuroptera: Chrysopidae). J. Econ. Entomol., 2008, 101(5), 1676–1684; https://doi.org/10.1093/jee/101.5.1676.
- Bradford, M. M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 74, 248–254; https://doi.org/10.1016/0003-2697(76)90527-3.
- Van Asperen, K., A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol., 1962, 8, 401–416; https://doi.org/10.1016/0022-1910(62)90074-4.
- Davis, B. J., Disc electrophoresis II. Method and application to human serum proteins. Ann. NY Acad. Sci., 1964, 121, 404–427; https://doi.org/10.1111/j.1749-6632.1964.tb14213.x.
- Kao, C. H., Hung, C. F. and Sun, C. N., Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. J. Econ. Entomol., 1989, 82(5), 1299–1304; https:// doi.org/10.1093/jee/82.5.1299.
- Kinoshita, F. K., Frawley, J. P. and Du Bois, K. P., Quantitative measurement of induction of hepatic microsomal enzymes by various dietary levels of DDT and toxaphene in rats. Toxicol. Appl. Pharmacol., 1966, 9, 505–511; https://doi.org/10.1016/0041008X(66)90011-1.
- Abbott, W. S., A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 1925, 18(2), 265–267; https://doi.org/ 10.1093/jee/18.2.265a.
- Finney, D. J., Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, Cambridge University Press, Cambridge, UK, 1952, p. 318.
- Kim, Y. J., Lee, H. S., Lee, S. W., Kim, G. H. and Ahn, Y. J., Toxicity of tebufenpyrad to Tetranychus urticae (Acari: Tetranychidae) and Amblyseius womersleyi (Acari: Phytoseiidae) under laboratory and field conditions. J. Econ. Entomol., 1999, 92(1), 187–192; https://doi.org/10.1093/jee/92.1.187.
- Sohail, M., Nasar, M. H., Muhammad, R., Soomro, Q. A., Asif, M. U. and Maari, J. M., Resistance potential of Chrysoperla carnea (Stephens) to insecticides used against sucking complex of cotton. Int. J. Ecotoxicol. Ecobiol., 2019, 4(1), 1–7; https:// doi.org/10.11648/J.IJEE.20190401.11.
- Ishaaya, I., Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Arch. Insect Biochem. Physiol., 1993, 22(1–2), 263–276; https://doi.org/10.1002/arch.940220119.
- Mohan, M. and Gujar, G. T., Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Prot., 2003, 22(3), 495–504; https://doi.org/10.1016/S0261-2194(02)00201-6.
- Grafton-Cardwell, E. E. and Hoy, M. A., Genetic improvement of common green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae): selection for carbaryl resistance. Environ. Entomol., 1986, 15(6), 1130–1136; https://doi.org/10.1093/ee/15.6.1130.
- Mehrab, C., Mohammad, S. A., Breza, M. S., Browshan, A. B. and Banwara, B., Esterase banding pattern in different developmental stages of Culex quinquefasciatus Say 1823 (Diptera: Culicidae). Int. J. Adv. Biol. Res., 2016, 6(4), 553–557.
- Wu, Y., Detection and mechanisms of resistance evolved in insects to Cry toxins from Bacillus thuringiensis. Adv. Insect Physiol., 2014, 47, 297–342; https://doi.org/10.1016/B978-0-12800197-4.00006-3.
- Luo, C., Jones, C., Devine, G., Zhang, F., Denholm, I. and Gorman, K., Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Protect., 2010, 29, 429–434; https://doi.org/10.1016/j.cropro.2009.10.001.
Abstract Views: 426
PDF Views: 139