Open Access Open Access  Restricted Access Subscription Access

Effect of Alumina Filler on Spherulite Growth and Ionic Conductivity of Peo9(LiClO4) Solid Polymer Electrolyte


Affiliations
1 Rajarata University of Sri Lanka, Mihintale, Sri Lanka
2 National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
3 Department of Physics, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
4 Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
 

The effect of incorporation of alumina on conductivity and in situ growth of spherulites in (PEO)9LiClO4 solid polymer electrolyte was studied using polarized microscopy, impedance and infrared spectroscopy. Fourfold enhancement in ionic conductivity correlated with increase in the amorphous nature of the polymer electrolyte was observed with the addition of 15 wt% of alumina having 5.5 nm pore size. The addition of 5 wt% of alumina with pore size <10 μm, increased the ionic conductivity by nearly 3%. Filler particles may act as nuclei for the spherulites, while preventing the recrystallization tendency of the polymer and hence increase its conductivity.

Keywords

Alumina Filler, Ionic Conductivity Polymer Electrolyte, Polyethylene Oxide, Spherulite.
User
Notifications
Font Size

  • Fenton, D. E., Parker, J. M. and Wrighter, P. V., Complexes of alkali metal ions with poly (ethylene oxide). Polymer, 1973, 14(11), 589–590.
  • Armand, M. B., The history of polymer electrolytes. Solid State Ionics, 1994, 69, 3–4.
  • Colombo, F. et al., Polymer-in-ceramic nanocomposite solid electrolyte for lithium metal batteries encompassing PEO-grafted TiO2 nanocrystals. J. Electrochem. Soc., 2020, 167(7), 070535–070541.
  • Yap, Y. L., You, A. H. and Teo, L. L., Preparation and characterization studies of PMMA–PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics, 2019, 25(7), 3087–3092.
  • Zhang, D. et al., Recent progress in organic–inorganic composite solid electrolytes for all‐solid‐state lithium batteries. Chem. Eur. J., 2020, 26(8), 1720–1736.
  • Pitawala, H. M. J. C., Dissanayake, M. A. K. L., Seneviratne, V. A., Mellander, B.-E. and Albinson, I., Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf : Al2O3 nanocomposite polymer electrolyte system. J. Solid State Electrochem., 2008, 12, 783–789.
  • Wimalaweera, K. K., Seneviratne, V. A. and Dissanayake, M. A. K. L., Effect of Al2O3 ceramic filler on thermal and transport properties of poly(ethylene oxide)-lithium perchlorate solid polymer electrolyte. Proc. Eng., 2017, 215, 109–114.
  • Pradeepa, P., Edwinraj, S. and Prabhu, M. R., Effects of ceramic filler in poly(vinyl chloride)/poly(ethylmethacrylate) based polymer blend electrolytes. Chin. Chem. Lett., 2015, 26, 1191– 1196.
  • Croce, F., Persi, L., Scrosati, B., Fiory, F. S., Plichta, E. and Hendrickson, M. A., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta, 2001, 46, 2457–2461.
  • Chaurasia, S. K., Singh, R. K. and Chandra, S., Dielectric relaxation and conductivity studies on (PEO : LiClO4) polymer electrolyte with added ionic liquid [BMIM][PF6]: evidence of ion–ion interaction. J. Polym. Sci.: Part B, 2011, 49, 291–300.
  • Nirmala Devi, G., Chitra, S., Selvasekarapandian, S., Premalatha, M., Monisha, S. and Saranya, J., Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics, 2017, 23, 3377–3388.
  • Zhang, Q., Liu, K., Ding, F. and Liu, X. J., Recent advances in solid polymer electrolytes for lithium batteries. Nano Res., 2017, 10, 4139–4174.
  • Zhang, Y., Li, J., Huo, H. and Jiang, S., Effects of lithium perchlorate on poly(ethylene oxide) spherulite morphology and spherulite growth kinetics. J. Appl. Polym. Sci., 2012, 123, 1935– 1943.
  • Choi, B.-K., Optical microscopy study on the crystallization in PEO–salt polymer electrolytes. Solid State Ionics, 2004, 168, 123– 129.
  • Dissanayake, M. A. K. L., Jayathilaka, P. A. R. D., Bokalawala, R. S. P., Albinsson, I. and Mellander, B.-E., Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: Al2O3 composite polymer electrolyte. J. Power Sources, 2003, 119, 409–414.
  • Pan, C. Y., Feng, Q., Wang, L. J., Zhang, Q. and Chao, M., Morphology and conductivity of in-situ PEO–LiClO4–TiO2 composite polymer electrolyte. J. Central South Univ. Technol., 2007, 14, 348–352.
  • Vignarooban, K., Dissanayake, M. A. K. L., Albinson, I. and Mellander, B.-E., Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics, 2014, 266(15), 25–28.
  • Dissanayake, M. A. K. L., Rupasinghe, W. N. S., Seneviratne, V. A., Thotawatthage, C. A. and Senadeera, G. K. R., Optimization of iodide ion conductivity and nano filler effect for efficiency enhancement in polyethylene oxide (PEO) based dye sensitized solar cells. Electrochim. Acta, 2014, 145, 319–326.
  • Zhang, S., Lee, J. Y. and Hong, L., Li+ conducting ‘fuzzy’ poly(ethylene oxide)–SiO2 polymer composite electrolytes. J. Power Sources, 2004, 134, 95–102.
  • Das, S. and Ghosh, A., Ionic conductivity and dielectric permittivity of PEO–LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Adv., 2015, 5, 027125–027134.
  • Aziza, S. B., Woo, T. J., Kadir, M. F. Z. and Ahmed, H. M., A conceptual review on polymer electrolytes and ion transport models. J. Sci.: Adv. Mater. Devices, 2018, 3(1), 1–17.
  • Gránásy, L., Pusztai, T., Tegze, G., Warren, J. A. and Douglas, J. F., Growth and form of spherulites. Phys. Rev., 2005, E72, 011605–011615.
  • Raimo, M., Estimation of polymer nucleation and growth rates, by overall DSC crystallization rates. Polym. J., 2011, 43, 78–83.
  • Waddon, A. J. and Petrovic, Z. S., Spherulite crystallization in poly(ethylene oxide) – silica nanocomposites. Retardation of growth rates through reduced molecular mobility, Polymer J., 2002, 34(12), 876–881.
  • Choi, B. N., Yang, J. H., Kim, Y. S. and Chung, C. H., Effect of morphological change of copper-oxide fillers on the performance of solid polymer electrolytes for lithium–metal polymer batteries. RSC Adv., 2019, 9, 21760–21770.
  • Mamun, M. A. A., Kasahara, Y., Tasaki, T. and Fujimori, A., Spherulitic formation and characterization of partially fluorinated copolymers and their nanohybrids with functional fillers. Polym. Eng. Sci., 2017, 57, 161–171.
  • Pucić, I. and Jurkin, T., FTIR assessment of poly(ethyleneoxide) irradiated in solid state, melt and aqueous solution. Radiat. Phys. Chem., 2012, 81, 1426–1429.

Abstract Views: 150

PDF Views: 72




  • Effect of Alumina Filler on Spherulite Growth and Ionic Conductivity of Peo9(LiClO4) Solid Polymer Electrolyte

Abstract Views: 150  |  PDF Views: 72

Authors

B. A. Karunaratne
Rajarata University of Sri Lanka, Mihintale, Sri Lanka
F. A. E. Nugera
Rajarata University of Sri Lanka, Mihintale, Sri Lanka
M. A. K. L. Dissanayake
National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
G. K. R. Senadeera
Department of Physics, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
B. E. Mellander
Department of Physics, Chalmers University of Technology, Gothenburg, Sweden

Abstract


The effect of incorporation of alumina on conductivity and in situ growth of spherulites in (PEO)9LiClO4 solid polymer electrolyte was studied using polarized microscopy, impedance and infrared spectroscopy. Fourfold enhancement in ionic conductivity correlated with increase in the amorphous nature of the polymer electrolyte was observed with the addition of 15 wt% of alumina having 5.5 nm pore size. The addition of 5 wt% of alumina with pore size <10 μm, increased the ionic conductivity by nearly 3%. Filler particles may act as nuclei for the spherulites, while preventing the recrystallization tendency of the polymer and hence increase its conductivity.

Keywords


Alumina Filler, Ionic Conductivity Polymer Electrolyte, Polyethylene Oxide, Spherulite.

References





DOI: https://doi.org/10.18520/cs%2Fv120%2Fi5%2F900-906