Open Access
Subscription Access
Mapping surface-water area using time series landsat imagery on Google Earth Engine: a case study of Telangana, India
The extent of surface-water spread influences the hydrogeology and ecology of waterbodies. Remote sensing technology provides spatial and temporal datasets which aid in mapping the dynamics of surface waterbodies at the regional and global scale. In the present study, temporal changes in the surface area of waterbodies in Telangana, India, were monitored using indices like normalized difference vegetation index, normalized difference water index and modified NDWI and machine learning algorithms like a random forest using Landsat-8 data. Google Earth Engine cloud computing platform was used for processing earth observation data, based on the time series images of Landsat and compared with real-time groundwater levels. The results showed a significant increase (P < 0.01) in both surface-water area and groundwater levels in Telangana, especially after 2015, which we hypothesize could be due to the specialized water conservation project being implemented by the Government of Telangana since 2015.
Keywords
Cloud computing platform, groundwater level, machine learning algorithms, remote sensing, surface area, waterbodies.
User
Font Size
Information
- Du, N., Ottens, H. and Sliuzas, R., Spatial impact of urban expansion on surface water bodies – a case study of Wuhan, China. Landsc. Urban Plan., 2010, 94, 175–185; https://doi.org/10.1016/ j.landurbplan.2009.10.002.
- Melendo, J. D. V., Water as a strategic resource: international cooperation in shared basins and geowater. J. Spanish Inst. Strat. Stud., 2015; http://revista.ieee.es/article/view/274.
- Edokpayi, J. N., Odiyo, J. O. and Durowoju, O. S., Impact of wastewater on surface water quality in developing countries: a case study of South Africa. In Water Quality (ed. Hlanganani Tutu), Intech (open access), 2017, pp. 401–416; https://www.intechopen.com/books/water-quality/impact-of-wastewater-onsurface-water-quality-in-developing-countries-a-case-studyof-south-africa
- Huang, C., Chen, Y., Zhang, S. and Wu, J., Detecting, extracting, and monitoring surface water from space using optical sensors: a review. Rev. Geophys., 2018, 56, 333–360; https://doi.org/ 10.1029/2018RG000598.
- Karpatne, A., Khandelwal, A., Chen, X., Mithal, V., Faghmous, J. and Kumar, V., Global monitoring of inland water dynamics: state of the art, challenges and opportunities. In Computational Sustainability (eds Lassig, J., Kersting, K. and Morik, K.), Springer, Cham, 2016, vol. 645, pp. 121–147; https://doi.org/10.1007/978-3319-31858-5_7
- Chang, N. B., Imen, S. and Vannah, B., Remote sensing for monitoring surface water quality status and ecosystem state in relation to the nutrient cycle: a 40-year perspective. Environ. Sci. Technol., 2015, 45, 101–166; https://doi.org/10.1080/10643389.2013.829981
- Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P. and Saatchi, S., Measuring and modelling biodiversity from space. Prog. Phys. Geogr., 2008, 32, 203–221; https://doi.org/10.1177/0309133308093606.
- Schimel, D. S., Asner, G. P. and Moorcroft, P., Observing changing ecological diversity in the anthropocene. Front. Ecol. Environ., 2013, 11, 129–137; https://doi.org/10.1890/120111.
- Ustin, S. L. and Gamon, J. A., Remote sensing of plant functional types. New Phytol., 2010, 186, 795–816; https://doi.org/10.1111/ j.1469-8137.2010.03284.x.
- Wallace, J., Behn, G. and Furby, S., Vegetation condition assessment and monitoring from sequences of satellite imagery. Ecol. Manage. Restor., 2006, 7, 31–36; https://doi.org/10.1111/j.14428903.2006.00289.x.
- Domenikiotis, C., Loukas, A. and Dalezios, N. R., The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods. Nat. Hazards Earth Syst. Sci., 2003, 3, 115–128; https://doi.org/10.5194/nhess-3-115-2003.
- Shrestha, R., Di, L., Yu, G., Shao, Y., Kang, L. and Zhang, B., Detection of flood and its impact on crops using NDVI – corn case. In second International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 2013, pp. 200–204.
- McFeeters, S. K., The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sensing, 1996, 17, 1425–1432; https://doi.org/10.1080/ 01431169608948714.
- Xu, H., Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sensing, 2006, 27, 3025–3033.
- Anand, A. et al., Mapping the potential areas for enclosure fish culture in tropical reservoirs: geo-spatial solutions for sustainable aquaculture expansion. Spat. Inf. Res., 2019, 27, 733–747; https://doi.org/10.1007/s41324-019-00294-w.
- Acharya, T. D., Subedi, A. and Lee, D. H., Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 2018, 18, 1–15.
- Mizuochi, H., Hiyama, T., Ohta, T. and Nasahara, K. N., Evaluation of the surface water distribution in north-central Namibia based on MODIS and AMSR series. Remote Sensing, 2018, 6, 7660–7682; https://doi.org/10.3390/rs6087660.
- Akhtar, M. P., Roy, L. B. and Vishwakarma, K. M., Assessment of agricultural potential of a river command using geo-spatial techniques: a case study of Himalayan river project in Northern India. Appl. Water Sci., 2020, 10, 81; https://doi.org/10.1007/s13201020-1165-8.
- Anand, A. et al., Assessing the water spread area available for fish culture and fish production potential in inland lentic waterbodies using remote sensing: a case study from Chhattisgarh state, India. Remote Sensing Appl.: Soc. Environ., 2020, 17, 100273; https://doi.org/10.1016/j.rsase.2019.100273.
- Das, R. T. and Pal, S., Exploring geospatial changes of wetland in different hydrological paradigms using water presence frequency approach in Barind Tract of West Bengal. Spat. Inf. Res., 2017, 25, 467–479; https://doi.org/10.1007/s41324-017- 0114-6.
- Wang, Z., Liu, J., Li, J. and Zhang, D. D., Multi-spectral water index (MuWI): a native 10-m multi-spectral water index for accurate water mapping on sentinel-2. Remote Sensing, 2018, 10, 1–21; https://doi.org/10.3390/rs10101643.
- Soltanian, F. K., Abbasi, M. and Bakhtyari, H. R. R., Flood monitoring using NDWI and MNDWI spectral indices: a case study of Aghqala Flood-2019, Golestan Province, Iran. Int. Arch. Photogrammetry, Remote Sensing Spat. Inf. Sci., XLII-4/W18, 2010, 605–607; https://doi.org/10.5194/isprs-archives-XLII-4-W18-6052019.
- DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W. and Lang, M. W., Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sensing Environ., 2020, 240, 111664 24. https://doi.org/10.1016/j.rse.2020.111664 (accessed on 10 December 2020).
- MSME, Telangana – state profile 2015–16. MSME Development Institute, Hyderabad, 2016; http://dcmsme.gov.in/dips/state_wise_ dips/TS-Profile.pdf.
- Environment Protection Training and Research Institute (EPTRI), State action plan on climate change for Telangana state. A report submitted to MOEF&CC, GoI, 2017; http://moef.gov.in/ wp-content/uploads/2017/09/Telangana.pdf.
- Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. and Skakun, S., Exploring Google Earth Engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci., 2017, 7, 1–10; https://doi.org/10.3389/feart.2017.00017.
- United States Geological Survey (USGS), Landsat missions, Landsat 8, 2019; https://www.usgs.gov/land-resources/nli/landsat/ landsat-8?qt-science_support_page_related_con=0#qt-science_ support_page_related_con.
- Tucker, C. J., Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environ., 1979, 8, 127–150; https://doi.org/10.1016/0034- 4257(79)90013-0.
- Han-Qiu, X. A., Study on information extraction of water body with the modified normalized difference water index (mNDWI). J. Remote Sensing, 2005, 5, 589–595.
- Ashraf, M. and Nawaz, R., A comparison of change detection analyses using different band algebras for Baraila wetland with NASA’s multi-temporal landsat dataset. J. Geogr. Inf. Syst., 2015, 7, 1–19; https://doi.org/10.4236/jgis.2015.71001.
- Ji, L., Zhang, L. and Wylie, B., Analysis of dynamic thresholds for the normalized difference water index. Photogr. Eng. Remote Sensing, 2009, 75, 1307–1317; https://doi.org/10.14358/PERS.75.11.1307.
- Karsli, F., Guneroglu, A. and Dihkan, M., Spatio-temporal shoreline changes along the southern Black Sea coastal zone. J. Appl. Remote Sensing, 2011, 5, 1–14; https://doi.org/10.1117/1.3624520.
- Wang, C., Jia, M., Chen, N. and Wang, W., Long-term surface water dynamics analysis based on landsat imagery and the Google Earth Engine platform: a case study in the Middle Yangtze river basin. Remote Sensing, 2018, 10, 1–18; https://doi.org/10.3390/rs10101635.
- Nistor, M. M., Rahardjo, H., Satyanaga, A., Hao, K. Z., Xiaosheng, Q. and Sham, A. W. L., Investigation of groundwater table distribution using borehole piezometer data interpolation: case study of Singapore. Eng. Geol., 2020, 271, 105590; https://doi.org/10.1016/j.enggeo.2020.105590.
- Jie, C., Hanting, Z., Hui, Q., Jianhua, W. and Xuedi, Z., Selecting proper method for groundwater interpolation based on spatial correlation. In Fourth International Conference on Digital Manufacturing and Automation, Qingdao, China, 2013, pp. 1192–1195; https://doi.org/10.1109/ICDMA.2013.282.
- El Asmar, H. M. and Hereher, M. E., Change detection of the coastal zone east of the Nile delta using remote sensing. Environ. Earth Sci., 2011, 62, 769–777; https://doi.org/10.1007/s12665-010-0564-9.
- Nandi, D., Chowdhury, R., Mohapatra, J., Mohanta, K. and Ray, D., Automatic delineation of water bodies using multiple spectral indices. Int. J. Sci. Res. Sci., Eng. Technol., 2018, 4, 498–512.
- Ji, L., Geng, X., Sun, K., Zhao, Y. and Gong, P., Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water, 2015, 7, 794–817.
- Acharya, T. D., Subedi, A., Huang, H. and Lee, D. H., Application of water indices in surface water change detection using Landsat imagery in Nepal. Sensors Mater., 2019, 31, 1429–1447.
- Li, L., Vrieling, A., Skidmore, A., Wang, T. and Turak, E., Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment. Int. J. Appl. Earth Observ. Geoinform., 2018, 66, 135–145; https://doi.org/10.1016/j.jag.2017.11.007.
- Wakode, H. B., Baier, K., Jha, R. and Azzam, R., Analysis of urban growth using Landsat TM/ETM data and GIS – a case study of Hyderabad, India. Arab. J. Geosci., 2014, 7, 109–121; https://doi.org/10.1007/s12517-013-0843-3.
- Sunday Guardian Live, Mission Kakatiya is a boon for farmers. 2017; https://www.sundayguardianlive.com/news/12244-missionkakatiya-boon-farmers.
Abstract Views: 425
PDF Views: 195 PDF Views: 153