Open Access Open Access  Restricted Access Subscription Access

Immunocytochemical localization of leptin hormone in the neurosecretory cells of brain–suboesophageal ganglion complex of tropical tasar silkworm, Antheraea mylitta (D.) eco-race Bhandara


Affiliations
1 P.G. Department of Zoology, MJF Educational Campus, RTM Nagpur University, Nagpur 440 033, India
2 Department of Zoology, R. S. Bidkar Arts, Commerce and Science College, Hinganghat Dist., Wardha 442 301, India
3 Department of Zoology, Nabira Mahavidyalaya, Katol Dist., Nagpur 441 302, India
 

Leptin is a peripheral agent known for its function in feeding behaviour in vertebrates. In this study, we demonstrated leptin immunoreactivity in the brain and suboesophageal ganglion (SOG) of tropical tasar silkworm, Antheraea mylitta (D.) by immunohistochemistry using polyclonal antibody against mammalian leptin. Leptin immunoreactivity was not observed in the adult brain, whereas, intense reactivity was detected in the single neuronal group of cells in SOG. This study provides an essential groundwork to further elucidate the involvement of leptin in insect development and appetite regulatory systems of tropical tasar silkworm, Antheraea mylitta (D.) as well as in other insects.

Keywords

Antheraea mylitta, leptin, suboesophageal ganglion, tasar silkworm.
User
Notifications
Font Size

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J. M., Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372, 425–431.
  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Flier-Maratos, E. and Flier, J. S., Role of leptin in the neuroendocrine response to fasting. Nature, 1996, 382, 250–252.
  • Tinoco, A. et al., Leptin expression is rhythmic in brain and liver of goldfish (Carassius auratus). Role of feeding time. Gen. Comp. Endocr., 2014, 1(204), 239–247.
  • Mietlicki-Baase, E. et al., Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am. J. Physiol. – Endocr. Metab., 2015, 308(12), 1116–1122; doi:10.1152/ajpendo.00087.2015.
  • Loughton, B. G. and Saleuddin, A. S. M. (eds), Neurobiology and Endocrinology of Selected Invertebrates, Captus University Publications, North York, Canada, 1990.
  • Naya, S. et al., Eclosion hormone like immunoreactivity in the nervous system of Bombyx mori (Lepidoptera: Bombycidae) and Antheraea yamamai (Lepidoptera: Saturniidae) before after hatching. Eur. J. Entomol., 1994, 91, 189–196.
  • Nässel, D. and Wegener, C., A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides, 2011, 32, 1335– 1355.
  • Hiroshi, U., Yukiko, S., Kyohei, Y., Yoshiomi, K. and Kunihiro, S., An FXPRL amide neuropeptide induces seasonal reproductive polyphenism underlying a life history tradeoff in the Tussock moth. PLoS ONE, 2011, 6(8), 1–10.
  • Landau, M., Biggers, W. J. and Laufer, H., Invertebrate endocrinology, Comprehensive physiology, 2011.
  • Tembhare, D., Invertebrate Endocrinology, Himalaya publishing House, Mumbai, India, 2012, 1st edn.
  • Kramer, K. J., Vertebrate hormones in insects. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 7 (eds Kerkut, G. A. and Gilbert, L. I.), Pergamon Press, Oxford, UK, 1985, pp. 511–536.
  • Raabe, M., Comparative immunocytochemical study of release sites of insulin, glucagon and AKH-like products in Locusta migratoria, Periplaneta americana, and Carausius morosus. Cell Tissue Res., 1986, 245, 267–271.
  • Hazelwood, R., The pancreatic polypeptide (PP-fold) family: gastrointestinal, vascular, and feeding behavioral implications. Proc. Soc. Exp. Biol. Med., 1993, 202, 44–63.
  • Hu, Y. et al., Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J. Biol. Chem., 1996, 271, 26315–26319.
  • Gade, G. and Auerswald, L., Insect neuropeptides regulating substrate mobilization. S. Afr. J. Zoo., 1998, 33, 65–70.
  • Nassel, D. R., Tachykinin-related peptides in invertebrates: a review. Peptides, 1999, 20, 141–158.
  • Nassel, D. R., Neuropeptides in the nervous system of Drosophila and other insect: multiple role as neuromodulators and neurohormones. Prog. Neurobiol., 2002, 68, 1–84.
  • Predel, R., Peptidergic neurohemal system of an insect: mass spectrometric morphology. J. Comp. Neurol., 2001, 436, 363–375.
  • Nichols, R., Signaling pathways and physiological function of Drosophila melanogaster FMRF amide-related peptides. Annu.Rev. Entomol., 2003, 48, 485–503.
  • Patel, H. et al., Reprint of the distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. Gen. Comp. Endocr., 2014, 203, 307–314.
  • Fukuda, S. and Takeuchi, S., Diapause factor producing cells in the suboesophageal ganglion of the silkworm Bombyx mori L.Proc. Jpn Acad., 1967, 43, 51–56.
  • Fukuda, S. and Takeuchi, S., Studies on the diapuse factor producing cells in the sub-osophageal ganglion of the silk worm, Bombyx mori L. Embryologia (Nagoya), 1967, 9, 333–353.
  • Ichikawa, T., Hasegawa, K., Shimizu, I., Katsuno, K., Kataoka, H. and Suzuki, A., Structure of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. Zool. Sci., 1995, 12, 703–712.
  • Davis, N. T., Homberg, U., Teal, P. E. A., Altstein, M., Agricola, H. J. and Hildebrand, J. G., Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of suboesophageal ganglion of the tobacco hawkmoth, Manduca Sexta. Immunoreactivities to PBAN and other peptides. Microsc. Res. Techniq., 1996, 35, 201–229.
  • Barsagade, D. D., Rathee, S. D. and Tembhare, D. B., Structure of cephalic neuroendocrine system and immunocytochemical lacalization of neurohormones FMRF amide and neuropeptide-Y (NPY) in the cerebral neurosecretory cells in the tropical tasar silkworm, Antheraea mylitta (D.). In Applications of Biotechnology in Sericulture, Stardium Press (India), New Delhi, 2011, pp. 189–202.
  • Ando, T., Hase, T., Funayoshi, A., Arima, R. and Uchiyama, M., Sex pheromone biosynthesis from 14C-hexadecanoic acid in the silkworm moth. Agric. Biol. Chem., 1988, 52, 141–147.
  • Barsagade, D. and Gharade, S., Ultrastructural studies on the neurosecretory cells in the pars intercerebralis of larvae of tasar silkworm, Antheraea mylitta (D) eco-race Bhandara (Lepidoptera:Saturniidae). Int. J. Indust. Entomol., 2014, 29(1), 120–127.
  • Tembhare, D. and Barsagade, D., Cephalic neuroendocrine system in the tropical tasar silkworm, Antheraea mylitta (D) (Lepidoptera:Saturniidae): metamorphic and sericotropic functions. Int. J. Wild Silkmoth Silk, 2000, 4, 1–9.
  • Copenhaver, P. F. and Truman, J. W., Metamorphosis of the cerebral neuroendocrine system in the moth Manduca sexta. J. Neurol., 1986, 54, 814–826.
  • Huetteroth, W., el Jundi, S. and Schachtner, J., 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta. Front. Syst. Neurosci., 2010, 4(7), 1–15.
  • Sato, Y., Ikeda, M. and Yamashita, O., Neurosecretory cells expressing the gene for common precursor for diapause hormone and pheromone biosynthesis activating neuropeptide in the suboesophageal ganglion of the silkworm, Bombyx mori. Gen. Comp. Endocr., 1994, 96, 27–36.
  • Ajitha, V. S. and Muraleedharan, D., Tissue localization and partial characterization of pheromone biosynthesis activating neuropeptide in Achaea janata. J. Biosci., 2005, 30(2), 191–200.
  • Blackburn, M., Kingan, T. G., Raina, A. K. and Ma, M. C., Colocalization and differential expression of PBAN – and FMRF amide – like immuno reactivity in the suboesophageal ganglion of Heliothis zea during development. Arch. Insect. Biochem. Physiol., 1992, 21, 225–238.
  • Altman, J. S. and Kien, J., Functional organization of the suboesophageal ganglion in arthropods. In Arthropod Brain: Its Evolution, Development, Structure and Functions (ed. Gupta, A. P.), Wiley, New York, 1987, pp. 265–301.
  • Mitsumasu, K. et al., Molecular cloning and characterization of cDNAs encoding dopamine receptor-1 and -2 from brainsuboesophageal ganglion of the silkworm, Bombyx mori. Insect. Mol. Biol., 2008, 17, 185–195.
  • Ichikawa, T., Architecture of cerebral neurosecretory cell systems in the silkworm Bombyx mori. J. Exp. Biol., 1991, 161, 217–237.
  • Mitchell, B., Itagaki, H. and Pascale, R., Peripheral and central structures involved in insect gustation. Microsc. Res. Techniq., 1999, 47, 401–415.
  • Bader, R., Colomb, J., Pankratz, B., Schrock, A., Stocker, R. F. and Pankratz, M. J., Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons. J. Comp. Neurol., 2007, 502(5), 848–856.
  • Pawar, K. R. and Tembhare, D. B., Immunocytochemical localization of some neurotransmitters in the neurosecretory cells in the brain and ventral ganglia of the water beetle, Cybister tripunctatus Ol. (Coleoptera: Dytiscidae). J. Ent. Res., 2010, 34(3), 181–185.
  • Sun, J.-S., Zhang, T.-Y., Zhang, Q.-R. and Xu, W. H., Effect of the brain and suboesophageal ganglion on pupal development in Helicoverpa armigera through regulation of FXPRL amide neuropeptides. Regul. Peptides, 2003, 116, 163–171.
  • Morita, A., Niimi, T. and Yamashita, O., Physiological differentiation of DH-PBAN-producing neurosecretory cells in the silkworm embryo. J. Insect. Physiol., 2003, 49(12), 1093–1102.

Abstract Views: 405

PDF Views: 129




  • Immunocytochemical localization of leptin hormone in the neurosecretory cells of brain–suboesophageal ganglion complex of tropical tasar silkworm, Antheraea mylitta (D.) eco-race Bhandara

Abstract Views: 405  |  PDF Views: 129

Authors

Deepak D. Barsagade
P.G. Department of Zoology, MJF Educational Campus, RTM Nagpur University, Nagpur 440 033, India
Shruti A. Gharade
Department of Zoology, R. S. Bidkar Arts, Commerce and Science College, Hinganghat Dist., Wardha 442 301, India
Vikas G. Barsagade
Department of Zoology, Nabira Mahavidyalaya, Katol Dist., Nagpur 441 302, India

Abstract


Leptin is a peripheral agent known for its function in feeding behaviour in vertebrates. In this study, we demonstrated leptin immunoreactivity in the brain and suboesophageal ganglion (SOG) of tropical tasar silkworm, Antheraea mylitta (D.) by immunohistochemistry using polyclonal antibody against mammalian leptin. Leptin immunoreactivity was not observed in the adult brain, whereas, intense reactivity was detected in the single neuronal group of cells in SOG. This study provides an essential groundwork to further elucidate the involvement of leptin in insect development and appetite regulatory systems of tropical tasar silkworm, Antheraea mylitta (D.) as well as in other insects.

Keywords


Antheraea mylitta, leptin, suboesophageal ganglion, tasar silkworm.

References





DOI: https://doi.org/10.18520/cs%2Fv120%2Fi10%2F1611-1615